Hosmer Septage Ponds 2020 Groundwater Monitoring Annual Report

PREPARED FOR:REGIONAL DISTRICT OF EAST KOOTENAY PREPARED BY: SPERLING HANSEN ASSOCIATES

February, 2021

PRJ20050

- Landfill Engineering
- Solid Waste Planning
- Environmental Monitoring
- Landfill Fire Control

1. INTRODUCTION

Sperling Hansen Associates (SHA) was retained by the Regional District of East Kootenay (RDEK) in 2020 to develop an updated Groundwater Monitoring Program (GMP) for seven (7) Solid Waste Management facilities located withing the RDEK. As part of this GMP update SHA, along with Subconsultant Bear Environmental Limited (BEAR), will conduct four (4) groundwater sampling events per year, and provide one interim report per event for each site. The goal of this program is to provide the RDEK with valuable information regarding the groundwater quality at disposal sites and to assist in developing appropriate monitoring and management measures for the next five years.

SHA was awarded this contract with the RDEK in April, 2020. The first two quarterly sampling events were completed by the previous consultant EcoLogic in January and April 2020. As SHA was brought on halfway through the year, the results of the first two sampling events were shared with SHA so that a complete data set for 2020 could be compiled, and that the complete data from all four events could be reviewed and included in this Annual report.

The final quarterly water sampling event for the year was completed in October, 2020 over a week period. Samples taken from each site are recorded below, and water quality analysis discussed in Section 4. This report details the sampling notes, lab analysis results, and trends observed at the wells throughout 2020. Section 5 presents recommendations for the next year of monitoring.

1.1 Location and Setting

The Hosmer site is located in the sub-region of Elk Valley within the RDEK. The site is approximately 5 km north of the community of Hosmer. The latitude and longitude are 49.63563 N and 114.92165 W respectively.

Photo 1-1. Hosmer Site Layout.

1.2 Site Operations

The site is around 1 hectare in size, and consists of two unlined septic waste disposal basins. The basins are located central on the site and occupy approximately 0.44 hectares.

Due to the nature of the septic waste when it comes into contact with water, it is required to monitor the groundwater on and surrounding the site to observe impacts from the exfiltration ponds. In compliance with Landfill Criteria for Municipal Solid Waste, Sperling Hansen Associates (SHA) was retained to conduct the groundwater monitoring for five (5) of the groundwater monitoring wells identified by the RDEK. The well locations are shown on Figure 1 and sampled quarterly in January, April, July, and October.

The property operates under certificate permit PE-6901, which is attached to this report as Appendix A.

2. MONITORING PROGRAM

Per the Site's Permit PE-6901, the RDEK is authorized to discharge septic tank pumpage and sewage holding tank effluent at 22.7 m³/day from domestic and other sources through infiltration basins to the ground approximately 6.5 km north of Hosmer, BC. A groundwater monitoring program is not included in the Permit.

Per Section 85 of the BC Municipal Wastewater regulation, a discharger must install monitoring wells in sufficient number and orientation, as determined by a qualified professional, to measure background and receiving environment water quality. This includes at least 4 wells per aquifer, one of which must be a background monitoring well.

A total of five (5) monitoring wells exist and all were sampling in accordance to the BC Field Sampling Manual in 2020. Site monitoring wells are shown on Figure 1 and were sampled quarterly in January, April, July, and October.

2.1 Methodology

Subconsultant BEAR has been hired to implement the monitoring program and conduct field sampling for SHA. Each well sampled is tested for a set of parameters. These differ from site to site and some are only tested quarterly while others are only tested annually. Table 2-1 shows which parameters are tested Quarterly and Yearly.

Table 2-1. Groundwater Monitoring Parameters.

Site	Quarterly Params	Yearly Params
	Temperature	Temperature
	Conductivity	Conductivity
	pН	pН
	Nitrite (N)	Nitrite (N)
	Nitrate (N)	Nitrate (N)
	Ammonia Nitrogen (NH3)	Ammonia Nitrogen (NH3)
	Fluoride (F)	Fluoride (F)
Haaman Canta aa	Sulphate (SO4)	Sulphate (SO4)
Hosmer Septage Treatment Pond	Chloride (Cl)	Chloride (Cl)
	Hardness	Hardness
	Total Alkalinity	Total Alkalinity
	Total Suspended Solids	Total Suspended Solids
	Fecal and Total Coliform	Fecal and Total Coliform
	Dissolved Metals	Dissolved Metals
		BTEX
		EPH/VPH

Analysis of the water samples was conducted by ALS Environmental, a CALA accredited laboratory. Samples were sent to ALS in Calgary via courier by BEAR. Certificates of Analysis (COA) are included in Appendix C. Based on internal laboratory QA/QC, the results are considered reliable. Note that COAs for Q1 and Q2 2020 were not available to SHA.

2.2 Groundwater Flow

The Hosmer site is located approximately 150 m directly east of the Elk River. The River is the closest surface water body to the Site. According to the BC Water Resources Atlas, there are no mapped aquifers underlying the site. Based on regional topography, groundwater is inferred to flow south west in the same direction as the Elk River. Locally, groundwater flow can be affected by building foundations, recharge areas, drainage and subsurface utilities. Depending on their depth, underground structures may significantly influence shallow groundwater flow in the vicinity of the Site. Locally, based on water levels collected in 2020, groundwater appears to flow west toward the Elk River. Well details are shown in the Table 2-2 below.

Table 2-2. Well Details and Water Level

Well ID	Well Construction	Water Level (from EcoLogic Reports)	Water Level (from EcoLogic Reports)	Q3 Depth to Water BGS (m)	Q4 Depth to Water BGS (m)
E265105	2" PVC	5.15	4.94	3.555	4.35
E265106	2" PVC	1	4.18	2.87	3.59
E265107	2" PVC	5.23	4.9	3.605	4.285
E265108	2" PVC	5.6	5.26	4.175	4.875
E265104	2" PVC	6	5.83	4.1	5.06

BGS – Below Ground Surface

2.3 Nomenclature

The reporting of monitoring wells at the East Kootenay sites has previously been a combination of Environmental Monitoring System Numbers (EMSN) and site number names that are the more common naming convention (MW-1). The majority of sites have both, but some wells only have the E number. To avoid confusion and the potential of double counting the wells, SHA has decided to use the E numbers when referring to them. This way reports and analyses can be consistent, and can be traced to the OC or Permit for the site. The site maps attached to these Annual Reports as Figure 1 have been updated to reflect this change and now have the EMSN numbers labelled.

2.4 Regulatory Criteria

The permit of operation for the site, published in 1983, does not specify water quality guidelines or standards to be used for comparison to assess groundwater. SHA has used the standards that are appropriate for the site to be consistent with the other solid waste sites in the RDEK.

The CSR Protocol 21 indicates that Drinking Water (DW) Standards generally apply where drinking water sources are within 500m of a site, or if a property is situated on an aquifer that could be used in the future for Drinking Water. A search for water wells revealed that there are no water wells within 500m of the Site. Information from the BC Water Atlas indicates that there are no mapped aquifers underlying the Site. Although current DW use appears to not apply to the site, without further investigation, future DW standards are assumed to apply. Note that future drinking water use applies where information is unavailable or inadequate to demonstrate an absence of drinking water aquifers below a site.

The BC Contaminated Sites Regulation (CSR) Protocol 21 indicates that Aquatic Life Standards (AW) generally apply to all groundwater located within 500 m of a surface water body containing aquatic life. The Site is located approximately 150m east of Elk River, therefore the Aquatic Life for Freshwater (AW) standards will apply.

Based on surrounding water use the following standards are considered to apply:

• The Schedule 3.2 of the BC CSR with consideration to Aquatic Life (AW) and Drinking Water (DW);

These standards and guidelines are the most recent published by BC ENV used to assess groundwater at contaminated sites and the quality of drinking water.

3. RESULTS

Permit PE-6901 does not outline parameters for monitoring. SHA has continued the monitoring program employed by EcoLogic for the past several years which are consistent with landfill leachate parameters analysed throughout the RDEK.

The parameters tested during this event include:

• temperature, conductivity, pH, nitrite, nitrate, ammonia nitrogen, fluoride, sulphate, chloride, hardness, alkalinity, total suspended solids, fecal and total coliform.

Appendix B attached shows the water quality analysis conducted by ALS Environmental, and Table B-1 provides the water quality analysis alongside the applicable water standards. Laboratory certificates are attached in Appendix C.

3.1 Exceedances

All parameters tested were below applicable BC CSR Schedule 3.2 AW standards.

The following parameters were above BC CSR Schedule 3.2 DW standards in one or more wells:

- Nitrate (as N)
- Arsenic
- Cobalt
- Iron
- Lithium.

Note that E.Coli and Fecal Coliform were present in some wells in numbers that exceed Canadian Drinking Water Standards.

Table 4-1 shows maximum concentrations.

Table 4-1. Maximum Parameter Concentrations Above BC CSR DW Standards

Parameter	BC CSR DW Standard	Maximum Concentration (mg/L)	Well Name
E.Coli	*No detectable bacteria per 100 mL	45	MW-7
Fecal Coliforms	*No detectable bacteria per 100 mL	100	MW-6
Nitrate (as N)	1 mg/L	81.1	MW-7
Lithium (Li)	0.008 mg/L	0.0538	E265105
Cobalt (Co)	0.001 mg/L	0.0196	E265107
Arsenic (As)	0.01 mg/L	0.0215	E265107
Iron (Fe)	6.5 mg/L	18.1	E265108

[&]quot;*" Denotes applicable Canadian Drinking Water Standard as the is no BC CSR standards for coliforms. Green shading indicates a concentration above applicable standards.

Note: concentrations listed in the table are all above applicable DW standards. Maximum concentrations are shown in **bold.**

3.2 Notes on Regional Background Concentrations

As per the British Columbia Contaminated Sites Regulation (CSR) Schedule 3.2, 2019, the drinking water limit for Lithium (Li) is 8 µg/L or 0.008 mg/L. Many regions in B.C. have background concentrations of lithium that exceed this limit, which poses a complication for monitored sites that are required under Operation Certificates or Permits to avoid exceedances of harmful parameters. In response, the B.C. Ministry of Environment and Climate Change (BC ENV) published a document in 2018 qualifying the limit and providing background concentrations for three regions in the province for five metals, including arsenic, cobalt, and lithium. The limits published in the *Technical Bulletin 3: Regional Background Concentrations for Select Inorganic Substances in Groundwater* account for naturally occurring levels of the five metals, and are therefore higher than the limit within the CSR currently.

However, these three regions only comprise the Lower Mainland, South Vancouver Island, and Thompson-Okanagan. SHA believes the exceedances in lithium observed at the RDEK sites are attributable to natural background concentrations that are not accounted for in the CSR Schedule 3.2 or *Technical Bulletin 3*. It should be noted that Eco/Logic did not have a comparison limit for lithium, which explains why lithium was not a reported exceedance in previous years despite there being little difference between 2019 and 2020 results.

Thompson-Okanagan, the nearest region to the RDEK with a back ground concentration qualifier for lithium, has a qualified concentration in the Bulletin of $96\,\mu g/L$, or $0.096\,m g/L$. Arsenic has a background concentration of $0.013\,m g/L$, and Cobalt $0.02\,m g/L$. SHA recommends keeping a note of this and a close eye on these parameters in ongoing monitoring. SHA does not believe the RD needs to look into remediation measures at this point, but recommends the RD flag this exceedance history in the case that the Ministry publishes background concentrations for the Kootenay region.

Regional District of East Kootenay
Solid Waste Facility Monitoring Program 2020-2025
PRJ20050
ANNUAL REPORT

4. DISCUSSION

All parameters tested were below applicable BC CSR Schedule 3.2 AW standards.

Parameters above applicable BC CSR Schedule 3.2 DW standards included the following.

- Nitrate
- Lithium
- Cobalt
- Iron
- Arsenic
- E.Coli (above the Canadian Drinking Water Standard)
- Fecal Coliform (above the Canadian Drinking Water Standard)

The maximum concentration of lithium was found at E265105 at 0.0538 mg/L versus the BC CSR DW standard of 0.008 mg/L. The maximum concentration of cobalt was found at E265107 at 0.0196 mg/L versus the BC CSR DW standard of 0.001 mg/L. The maximum arsenic concentration was found at E265107 at 0.0215 mg/L versus the BC CSR DW standard of 0.01 mg/L. The maximum iron concentration was found at E265108 at 18.1 mg/L versus the BC CSR DW standard of 6.5 mg/L.

These maximums are calculated as the following times their respective standards:

- Lithium 6.7
- Cobalt 19.6
- Arsenic -2.1
- Iron -2.8

Note that bacterial coliforms and elevated nitrate were also found in site groundwater indicating expected local impacts from the sewage infiltration basins.

SHA reviewed Site and surrounding water use per CSR Protocol 21. Although current DW use appears to not apply to the site, without further investigation of the underlying unmapped aquifer, future DW standards are assumed to apply.

Based on this information regarding current water use, and results that show concentrations below applicable AW standards, SHA considers the impacts of the sewage infiltration basin to the surrounding environment to be low.

4.1 Trend Analysis

To illustrate the trends observed in key parameters at the wells sampled, SHA has prepared figures that combine the 2020 analytical results with the applicable criteria limits.

- Figure 2 Lithium concentrations
- Figure 3 Sulfate concentrations
- Figure 4 Sodium concentrations
- Figure 5 Chloride concentrations
- Figure 6 Nitrate Concentrations
- Figure 7 Specific Conductance (Conductivity)
- Figure 8 Cobalt
- Figure 9 Iron
- Figure 10 Arsenic

The red line on each figure represents the limit for that parameter according to the criteria, to show if wells are under or exceeding the maximum allowable concentration at the time of each quarterly sampling event.

Sulfate, sodium, chloride, nitrate, and nitrite are graphed because they are typical landfill indicators. As shown in the graphs, these parameters are below allowable limits and show the landfill is not impacting groundwater chemistry beyond regulatory standards.

Please note that the graphs provided are for observing trends, and data less than or equal to the detection limit for a parameter appears on graphs as trace concentrations. If a well shows to have no data on the graph, please refer to the master data table for the exact parameter concentration.

5. CONCLUSIONS AND RECOMMENDATIONS

Some parameters generally associated with sewage effluent including nitrate, arsenic, E. Coli, and fecal coliforms were noted above applicable BC CSR DW Standards, but below BC CSR AW standards in Site groundwater. Although there appears to be local impacts to groundwater from the Site's sewage infiltration basins, SHA considers the overall impacts to human health and the surrounding environment to be low based on Site and surrounding water use.

Other metals parameters that appear slightly elevated included lithium, cobalt, and iron that may be related to Site impacts but may also be naturally occurring. In conducting analyses for seven different sites within the RDEK with similar exceedances of lithium under the CSR DW limit, SHA believes these elevated concentrations are a region-wide occurrence caused by existing background concentrations rather than impacts caused by activities at the solid waste sites.

SHA recommends the following:

Slight parameter concentrations of dissolved metals above applicable standards were detected in the Site groundwater monitoring wells. SHA recommends that a future groundwater sampling event be conducted using a low flow method to minimize the re-suspension of colloidal materials that can be caused during sampling with bailers and/or Waterra inertia pumps. If this sampling method is effective in providing a more accurate interpretation of groundwater data and able to show the groundwater exceedances are a result of suspended materials from bailer sampling, then SHA could make a recommendation to the Regional District to implement this sampling method for the monitoring going forward.

The next sampling event, scheduled in Q2 in April 2021, will also be the annual sampling and analysis event. This follows the same schedule of 2020 that EcoLogic followed. SHA believes this makes the most sense as spring is the most likely time of year that all wells are accessible and have adequate water flow for sampling.

6. STATEMENT OF LIMITATIONS

This report has been prepared by Sperling Hansen Associates. (SHA) on behalf of the Regional District of East Kootenay (RDEK) in accordance with generally accepted engineering practices to a level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions in British Columbia.

The report is based on site visits, project experience, and analysis by SHA staff of data compiled during the preparation of this report from a number of sources. Except where specifically stated to the contrary, the information on which this study is based has been obtained from external sources. This external information has not been independently verified or otherwise examined by SHA to determine its accuracy and completeness. SHA has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the reports as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

The report is intended solely for the use of the RDEK. Any use which other parties makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such other parties. SHA does not accept any responsibility for other uses of the material contained herein nor for damages, if any, suffered by any third party because of decisions made or actions based on this report. Copying of this intellectual property for other purposes is not permitted.

The findings and conclusions of this report are valid only as of the date of this report. The interpretations presented in this report and the conclusions and recommendations that are drawn are based on information that was made available to SHA during the course of this project. Should additional new data become available in the future, SHA should be requested to re-evaluate the findings of this report and modify the conclusions and recommendations drawn, as required.

Should you have any questions on this report or require further assistance or information, please feel free to contact the undersigned at 778-471-7088 or 604-986-7723.

Report prepared by:

Chloe Hetherington

Chlor Hetherington

Environmental Analyst Assistant

Rahim Gaidhar

GIT, Project Geoscientist

Report reviewed by:

Scott Garthwaite

Sr. Civil Technologist

7. REFERENCES

Eco/Logic Environmental, Hosmer Septage Treatment Ponds Groundwater Monitoring Report 2019, prepared for the Regional District of East Kootenay.

Environmental Management Act, BC Contaminated Sites Regulation Schedule 3.2, 2019.

Ministry of Environment, BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report, August 2019.

RDEK Public Web Map 2020, retrieved from https://www.rdek.bc.ca/departments/mapping

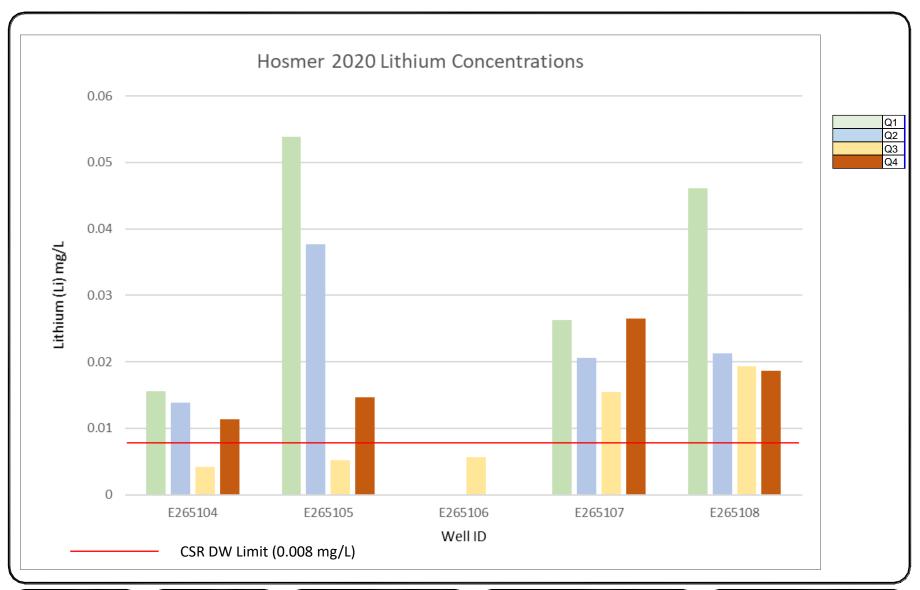
7. REFERENCES

Eco/Logic Environmental, Hosmer Septage Treatment Ponds Groundwater Monitoring Report 2019, prepared for the Regional District of East Kootenay.

Environmental Management Act, BC Contaminated Sites Regulation Schedule 3.2, 2019.

Ministry of Environment, BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report, August 2019.

RDEK Public Web Map 2020, retrieved from https://www.rdek.bc.ca/departments/mapping

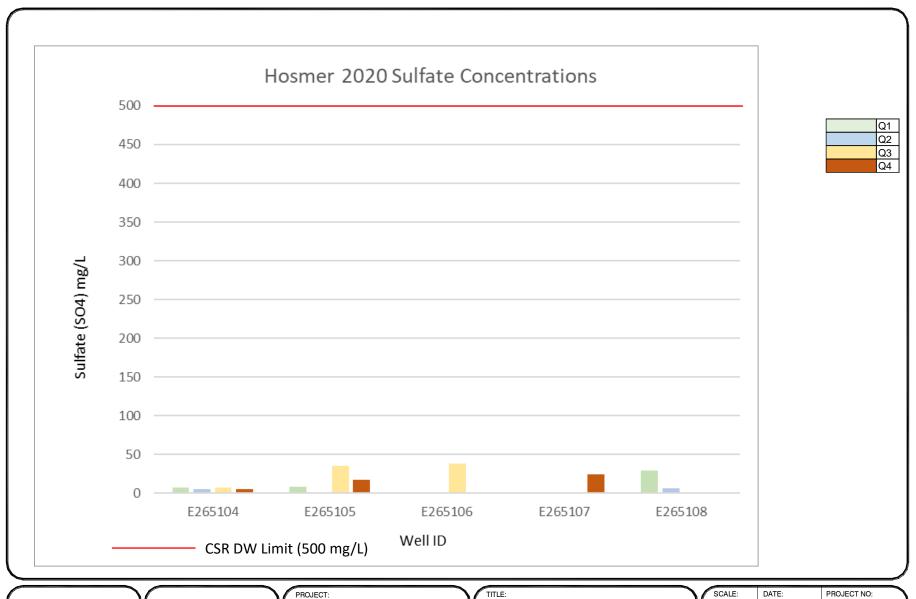


PRO IFCT

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025 HOSMER SEPTAGE TREATMENT POND

MONITORING LOCATIONS

_				_
SCALE:	DATE:		PROJECT NO:	
N/A	2020/10/01 yyyy/mm/dd		20050	
DESIGNED	- DRAWING		NO:	
DRAWN	MG	F	igure 1	
CHECKED		_	.9	_

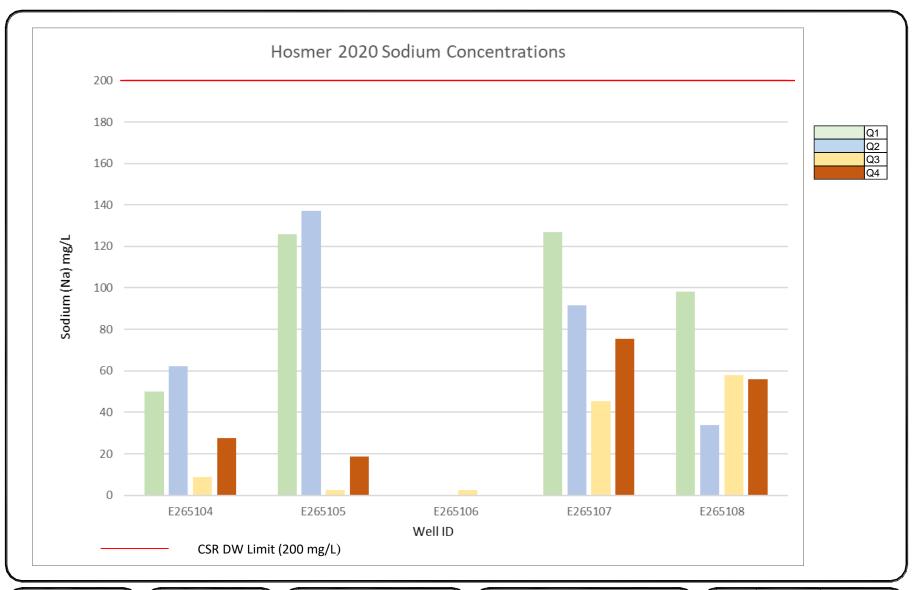

PROJECT:

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

TITLE:

SCALE:	DATE:		PROJECT NO:
N/A	28/01/2021 yyyy/mm/dd		20050
DESIGNED		DRAWING	NO:
DRAWN	СН	F	igure 2
CHECKED	SG	•	igui e z

2020 Lithium Concentrations



SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

۱.	SCALE:	DATE:		PROJECT NO:
	N/A	28/01/2021 yyyy/mm/dd		20050
li	DESIGNED		DRAWING	NO:
	DRAWN	СН	F	igure 3
7 1	CHECKED	SG	•	igui e o

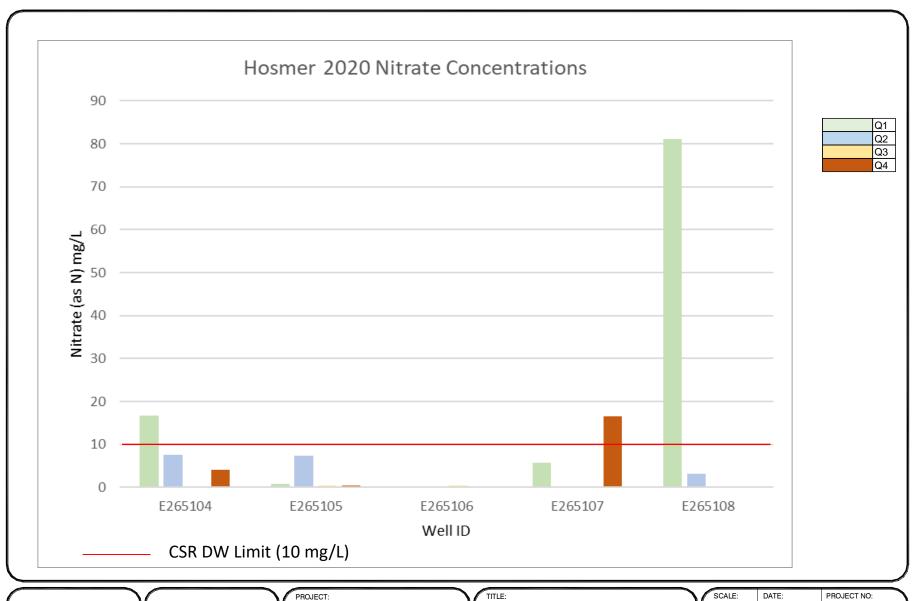
2020 Sulfate Concentrations

PROJECT:

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025 IIIL

2020 Sodium Concentrations

SCALE:	DATE:		PROJECT NO:
N/A	28/0	1/2021	20050
DESIGNED	-	DRAWING	S NO:
DRAWN	СН		Figure 4
CHECKED	- 66		Figure 4

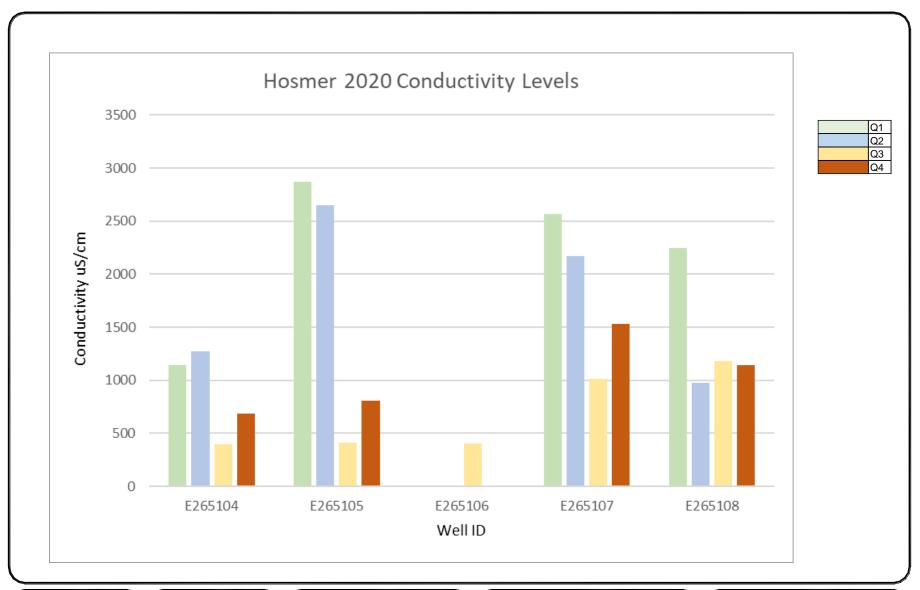


PROJECT:

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

2020 Chloride Concentrations

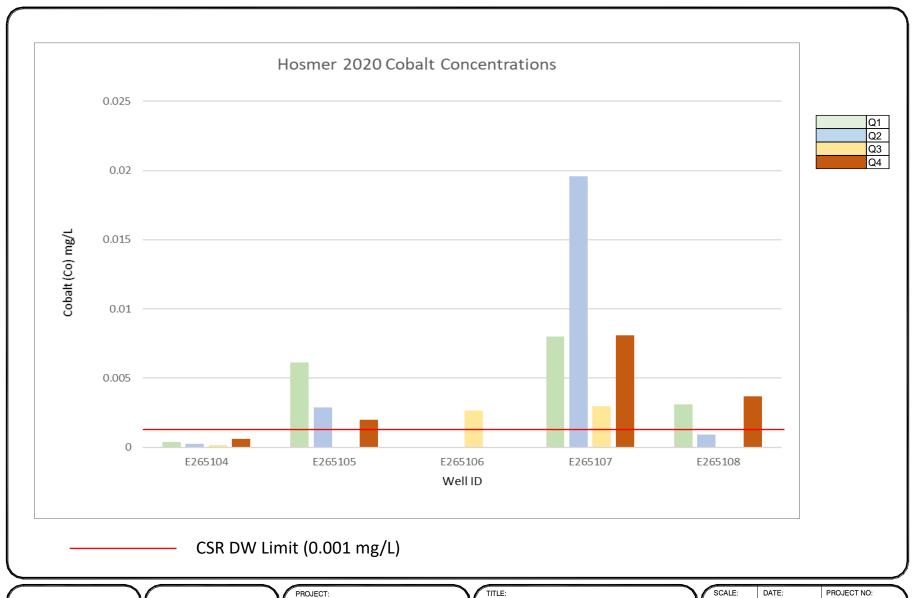
SCALE:	DATE:		PROJECT NO:
N/A	28/01/2021 yyyy/mm/dd		20050
DESIGNED	DRAWING		NO:
DRAWN	СН	F	igure 5
CHECKED	SG	•	igui e 5



SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

2020 Nitrate Concentrations

SCALE:	DATE:		PROJECT NO:
N/A	28/01/2021 yyyy/mm/dd		20050
DESIGNED	DRAWING		NO:
DRAWN	СН	F	igure 6
CHECKED	SG	•	igui e o

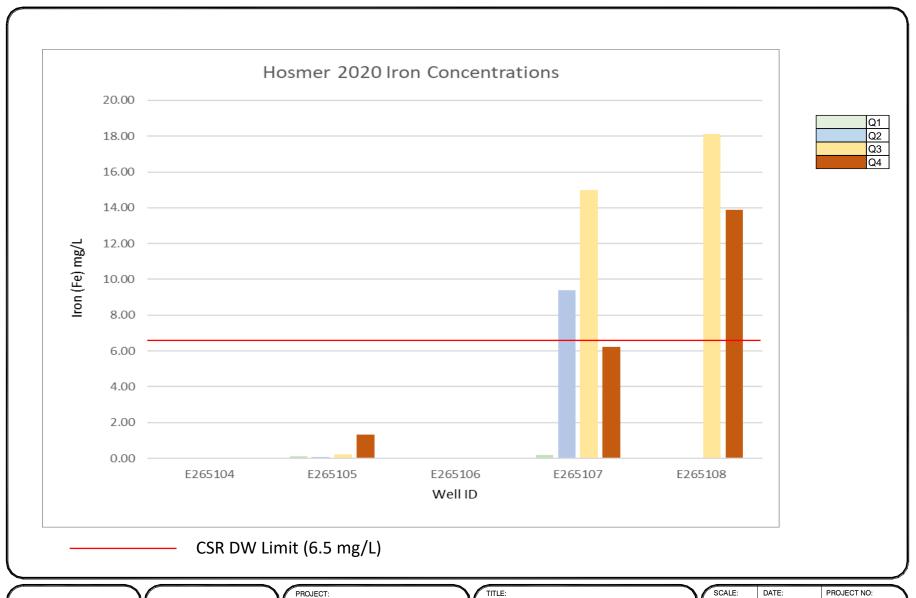


PROJEC

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025 2020 Conductivity Trend

TITLE:

h /	SCALE:	DATE:		PROJECT NO:
	N/A	28/01/2021 yyyy/mm/dd		20050
ll	DESIGNED		DRAWING	NO:
	DRAWN	СН	F	igure 7
, ,	CHECKED	SG	•	iguie 1



SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

2020 Cobalt Concentrations

١.	SCALE:	DATE:		PROJECT NO:
	N/A	28/01/2021 yyyy/mm/dd		20050
ı	DESIGNED		DRAWING	S NO:
	DRAWN	СН	F	igure 7
0	CHECKED	SG	•	iguie 1

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

2020 Iron Concentrations

SCALE:	DATE:		PROJECT NO:
N/A	28/01/2021 yyyy/mm/dd		20050
DESIGNED		DRAWING	NO:
DRAWN	СН	F	igure 8
CHECKED	SG	•	iguie 0

PROJECT:

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025

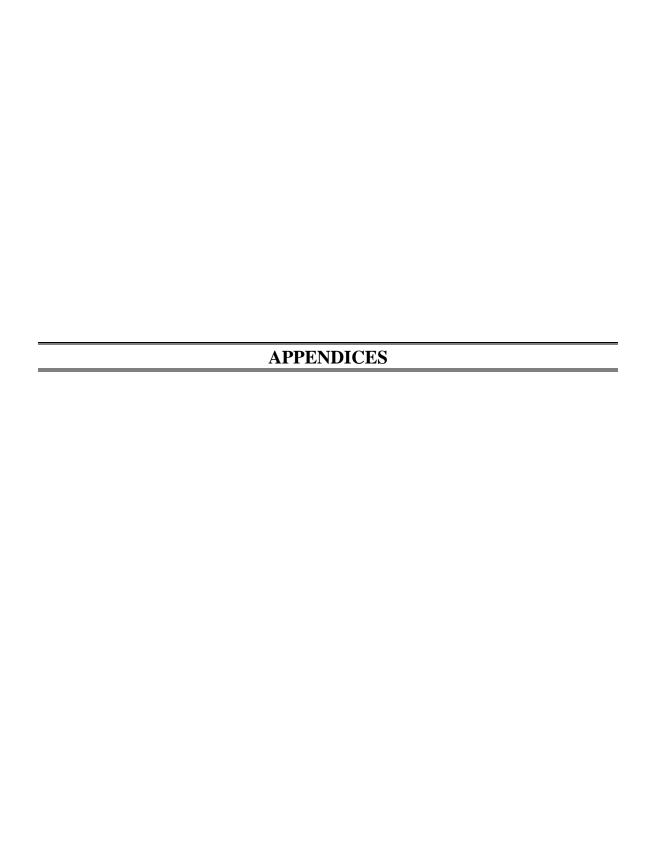
2020 Iron Concentrations

SCALE:	DATE:		PROJECT NO:				
N/A		1/2021 /mm/dd	20050				
DESIGNED		DRAWING	i NO:				
DRAWN	СН	Figure 8					
CHECKED	SG		igui e o				

Table B-1			Q1 (EcoLogic)					Q2 (EcoLogic)					Q3				Q4							
							Jan-20					Apr-20					Jul-20					Oct-20		
					CSR	CSR		CSR	CSR	CSR	CSR	1 4	CSR	CSR	CSR	CSR	CSR	CSR	CSR	CSR	CSR	CSR	CSR	CSR
ALS				Sample ID	E265104	E265105	E265106	E265107	E265108	E265104	E265105	E265106	E265107	E265108	E265104	E265105	E265106	MW-6	MW-7	E265104	E265105	E265106	E265107	E265108
		CSR-AW	CSR-DW	Well Name	-	-		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-
8/7/2020		2019 (2)	2019 (2)	ALS ID	VA20A0149-001	VA20A0149-002		VA20A0149-003	VA20A0149-004	-	-		-	-	L2478666-1	L2478666-2	L2478666-3	L2478666-4	L2478666-5	L2520199-1	L2520199-2	L2478666-3	L2520199-3	L2520199-4
Multiple Work Orders				Date Sampled	5-Jan-20	5-Jan-20		5-Jan-20	5-Jan-20	1-Apr-20	1-Apr-20		1-Apr-20	1-Apr-20	7/22/2020	7/22/2020	7/22/2020	7/22/2020	7/22/2020	21/10/2020	21/10/2020	7/22/2020	21/10/2020	21/10/2020
Analyte	Units			LOR						Hosmer	Hosmer		Hosmer	Hosmer		Hosmer		Hosmer	Hosmer	Hosmer	11			Hosmer
Hardness (as CaCO3)	mg/L	_	_	0.5	Hosmer 435	Hosmer 849	-	Hosmer 778	Hosmer 787	481	741	-	468	425	Hosmer 244	251	Hosmer 275	280	308	361	Hosmer 456	Hosmer Insufficient recharge	Hosmer 481	292
Total Suspended Solids	mg/L	=-	-	1	<3.0	8.5	-	105	388	6.1	11.1	-	83.8	27.5	4.9	14.7	2840 *	136 *	353 *	9.2	146	-	87.0	2650
Alkalinity, Total (as CaCO3)	mg/L	1.31-18.4	-	0.005	353 4.54	987 55.7	-	905 55.3	500 24.9	360 2.84	842 80.6	-	726 114	420 3.25	203 0.198	198 0.346	202 0.0864	406 50.0 *	451 97.4 *	304 3.88	385 8.01	-	457	495 56.0
Ammonia as N (a) Bicarbonate (HCO3)	mg/L mg/L	1.31-18.4	-	0.005	4.54	55.7	-	55.3	24.9	2.84	80.6	-	114	3.25	0.198 247	0.346 241	246	495	550	3.88	8.01 469	-	53 558	603
Carbonate (CO3)	mg/L	-	-	5	-	-	-	-	-	-	-	-	-	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0
Chloride (CI)	mg/L	1,500	250		125	384	-	320	235	167	339	-	237	56.8	10.1	2.69	2.06	86.8	117	59.2	70.7	-	217	120
Conductivity (EC) Fluoride (F)	uS/cm mg/L	2.0-3.0	1.5	0.02	1140 0.127	2870 <0.400	-	2570 <0.400	2250 <0.400	1270 <0.100	2650 <0.400	-	2170 <0.400	975 0.12	395 0.132	411 0.153	405 0.161	1010 0.30 *	1180 0.26 *	683 0.171	809 0.23	-	1530 0.33	1140 0.44
Hvdroxide (OH)	mg/L	2.0-3.0	1.0 -	5	- 0.121	~U.4UU -			~0.400 -	-		-		-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0
Nitrate and Nitrite (as N)	mg/L	=-	-	0.0051	-	-	-	-	-	-	-	-	-	-	0.327	0.475	0.432	0.045	<0.025	4.19	0.536	-	16.7	0.348
Nitrate (as N)	mg/L	400	10	0.005	16.8	0.759		5.82	81.1	7.53	7.31	-	<0.100	3.11	0.313	0.474	0.429	0.037	<0.025	4.18	0.529	-	16.6	0.328
Nitrite (as N)	mg/L pH	0.2-2	1	0.001	7.93	7.43	-	7.31	7.24	7.4	7.47	-	7.15	7.41	0.014 7.97	0.001 8.09	0.0022 8.07	0.0082 * 8.19	0.0066 * 8.01	0.0071 7.93	0.0068 7.90	-	0.138 7.96	0.0197 8.05
Orthophosphate-Dissolved (as P)	mg/L		-	0.001	-	-		7.51	-		-	-	7.13		<0.0010	<0.0010	0.0019	0.014	0.0011	-	7.90	-	-	-
Phosphorus (P)-Total	mg/L	-	-	0.002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfate (SO4)	mg/L	1,280-4,290	500	0.05	7.69	7.84	-	<6.00	29.2	5.49	<6.00	-	<6.00	6.72	6.96	35.7	38.4	0.43 *	0.28 *	5.13	17.0	-	24.1	0.63
Total Organic Carbon Turbidity	mg/L NTU	-	-		0.8	25.9	-	110	282	1.76	3.5	-	35.4	10.6	-	-	-	-	-	-	-	-	-	-
Biochemical Oxygen Demand	mg/L	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chemical Oxygen Demand	mg/L	=	-	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MPN - E. Coli	MPN/100mL	-	-	1	-	-	-	-	-	-	-	-	-	-	<1	<1	<100 *	6	45	<1	<1	-	<1	<1
Coliform Bacteria - Fecal MPN - Total Coliforms	CFU/100mL MPN/100mL	-	-	1	-	-	-	-	-	-	-	-	-	-	<1 6	<1 <1	<100 * <100 *	100 * 260	<100 * 580	<1 <1	<2 3	-	<2 <1	<100 <100
Dissolved Metals	WII TW/TOOTILE		_				_	_		_	_		_	_	Ü		1100	200	500		Ü		7.	1100
Aluminum (AI)-Dissolved	mg/L	-	9.5	0.001	<0.0010	<0.0010	-	<0.0010	0.001	<0.0010	<0.0010	-	0.0056	0.0013	<0.0010	0.0456	0.0229	0.0044	0.0032	0.0010	0.0021	-	0.0022	0.0058
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	mg/L	0.09 0.05	0.006 0.01	0.0001 0.0001	<0.00010 0.0001	0.00015 0.0008	-	0.00026 0.00141	<0.00010 0.00028	<0.00010 0.0001	0.0003 0.00085	-	0.00035 0.011	<0.00010 0.0004	<0.00010 0.0001	<0.00010 0.00015	<0.00010 0.00017	0.00012 0.0215	0.00011 0.0186	<0.00010 0.00014	<0.00010 0.00039	-	0.00030 0.00356	0.00024 0.0170
Barium (Ba)-Dissolved	mg/L mg/L	10	1	0.0001	0.401	1.04	-	0.00141	0.859	0.413	0.755	-	0.424	0.383	0.0001	0.128	0.129	0.289	0.485	0.353	0.00039	-	0.365	0.458
Beryllium (Be)-Dissolved	mg/L	0.0015	0.008	0.00002	<0.000100	<0.000100	-	<0.000100	<0.000100	<0.000100	<0.000100	-	<0.000100	<0.000100	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-	<0.000020	<0.000020
Bismuth (Bi)-Dissolved	mg/L	-		0.00005	<0.000050	<0.000050	-	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	<0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L	12	5	0.01	0.036	0.122	-	0.098	0.166	0.024	0.086	-	0.09	0.085	<0.010	<0.010	<0.010	0.085	0.092	0.035	0.038	-	0.132	0.105
Cadman (Ca)-bissoived	mg/L	0.0005-0.004	0.005	0.000005	0.000161	0.000414	-	0.000385	0.000303	0.000128	0.000608	-	0.000105	0.000351	0.0000752	0.0000778	0.0000345	0.0000094	0.0000083	0.000368	0.000119	-	0.0000675	0.0000183
Calcium (Ca)-Dissolved	mg/L	-	-	0.05	136	257	-	254	252	147	222	-	146	136	74.7	72.8	80.3	84.9	94.5	111	136	-	152	89.8
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L	0.01-0.09 0.04	0.05-6.0 0.001	0.0001	0.00024	0.00014	-	0.00015	<0.00010	0.00016	0.00013 0.00288	-	0.0003 0.0196	<0.00010	0.00015	0.00028	0.00013	0.00042 0.00266	0.00031	<0.00010	<0.00010	-	0.00015	0.00022 0.00367
Copper (Cu)-Dissolved (b)	mg/L mg/L	0.02-0.09	1.5	0.0001 0.0002	0.0004 0.00112	0.00611 0.00204	-	0.00798	0.00308 0.00225	0.00023 0.00111	0.00288	-	0.0196	0.00093 0.00183	<0.00010 0.00073	0.00017 0.00075	<0.00010 0.00048	0.00266	0.00298 0.00037	0.00080	0.00199 0.00048	-	0.00810 0.00195	0.00367
Iron (Fe)-Dissolved	mg/L	-	6.5	0.01	0.01	0.095	-	0.169	0.018	0.01	0.065	-	9.39	<0.010	0.01	0.233	0.029	15	18.1	0.012	1.32	-	6.24	13.9
Lead (Pb)-Dissolved (b)	mg/L	0.04-0.16	0.01	0.00005	0.000069	<0.000050		<0.000050	0.000051	0.000083	<0.000050		0.000608	<0.000050	<0.000050	0.00121	0.000088	0.000082 0.0154	<0.000050	0.000098	<0.000050	-	0.000068	0.000135
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	<u> </u>	0.008	0.001 0.005	0.0156	0.0538 50.2		0.0263 34.9	0.0461 38.5	0.0139 27.5	0.0377 44.9	- :	0.0206 24.9	0.0213 20.6	0.0042 13.9	0.0052 16.7	0.0056	0.0154 16.5	0.0193 17.5	0.0114 20.3	0.0146 28.3	-	0.0265 24.9	0.0186 16.3
Manganese (Mn)-Dissolved	mg/L		1.5	0.005	0.0383	1.08	-	1.32	0.902	0.0192	1.32	-	4.88	0.185	0.0157	0.115	0.00661	0.554	0.335	0.441	0.930	-	1.18	0.437
Mercury (Hg)-Dissolved	mg/L	0.00025	0.001		<0.000050	0.0000124	-	<0.0000050	<0.0000050	<0.000050	0.0000276	-	0.0000056	<0.0000050	-	-	-		-	<0.0000050	<0.0000050	-	<0.0000050	<0.0000050
Molybdenum (Mo)-Dissolved	mg/L	10	0.25	0.00005	0.000374	0.00164	-	0.0064	0.000965	0.000314	0.00416	-	0.0104	0.000813	0.000584	0.000648	0.00083	0.00487	0.00984	0.000819	0.00112	-	0.00999	0.0112
Nickel (Ni)-Dissolved (b) Phosphorus (P)-Dissolved	mg/L mg/L	0.25-1.5	0.08	0.0005	0.00294 <0.050	0.0323 <0.050	-	0.0548 <0.050	0.0101 <0.050	0.00181 <0.050	0.0352 <0.050	-	0.0739	0.00384	0.00093 <0.050	0.00175 <0.050	0.00052 <0.050	0.00765 1.96	0.00998	0.00512 <0.050	0.00934 <0.050	-	0.0463 <0.050	0.00840 0.071
Potassium (K)-Dissolved	mg/L	-	<u> </u>	0.03	7	42.5	-	61.4	25.4	6.26	47	<u> </u>	49.4	14.8	1.93	0.91	0.66	28.8	34.6	6.70	6.24	-	30.4	28.2
Selenium (Se)-Dissolved	mg/L	0.02	0.01	0.00005	0.000482	0.00243	-	0.00124	0.00023	0.000286	0.00163	-	0.00211	0.000617	0.000365	0.00209	0.0021	0.000294	0.000214	0.000310	0.000995	-	0.000758	0.000353
Silicon (Si)-Dissolved	mg/L	0.0005.0045	-	0.05	4	6.78	-	7.81	5.41	3.66	5.77	-	7.34	3.96	2.94	2.76	2.78	6.16	6.53	3.99	4.68	-	7.11	6.37
Silver (Ag)-Dissolved (b) Sodium (Na)-Dissolved	mg/L mg/L	0.0005-0.015	0.02 200	0.00001 0.05	<0.000010 49.9	<0.000010 126	-	0.000012 127	<0.000010 98.1	<0.000010 62.1	0.000018	-	0.000029 91.6	<0.000010	<0.000010 8.88	<0.000010 2.49	<0.000010 2.56	<0.000010 45.4	<0.000010 57.9	<0.000010 27.6	<0.000010 18.5	-	<0.000010 75.4	<0.000010 56.0
Strontium (Sr)-Dissolved	mg/L	-	-	0.0002	0.664	2.36	-	2.64	3.48	0.593	2.36	-	1.22	1.72	0.161	0.176	0.167	1.03	1.26	0.498	0.830	-	1.74	1.39
Sulfur (S)-Dissolved	mg/L	-	-	0.5	3.01	4.4	-	2.53	11.3	2.98	1.35	-	2.56	3.58	4.82	14.5	16.2	2.34	2.53	1.79	7.08	-	7.49	<0.50
Thallium (TI)-Dissolved	mg/L	0.003	-	0.00001	0.000096	0.000411	-	0.000291	0.000116	0.000059	0.000585	-	0.000819	0.000044	0.000035	0.000031	<0.000010	<0.00010	<0.000010	0.000143	0.000113	-	0.000141	<0.000010
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L mg/L	1	2.5	0.0001 0.0003	<0.00010 <0.00030	<0.00010 <0.00030	-	0.00011 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030	-	0.00033 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030	<0.00010 0.00087	<0.00010 <0.00030	0.00013 0.00049	0.0001 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030	-	0.00016 <0.00030	<0.00010 <0.00030
Uranium (U)-Dissolved	mg/L	0.085	0.02	0.00001	0.000594	0.00189		0.0021	0.000432	0.000551	0.00105	-	0.000993	0.00030	0.000459	0.000596	0.000716	0.000023	0.000032	0.000527	0.000770	-	0.00162	0.000101
Vanadium (V)-Dissolved	mg/L	=	0.02	0.0005	<0.00050	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050	-	0.0024	<0.00050	<0.00050	<0.00050	<0.00050	0.00245	0.0016	< 0.00050	<0.00050	-	0.00058	0.00229
Zinc (Zn)-Dissolved (b)	mg/L	0.075-2.4	3.0	0.001	0.0017	0.0048	-	0.0063	0.0053	0.002	0.0033	-	0.0056	0.0031	0.0017	0.0031	0.0019	0.0034	0.0018	0.0051	0.0077	-	0.0134	0.0030
Zirconium (Zr)-Dissolved	mg/L	-	-	0.0003	<0.00020	0.00051	-	0.0008	<0.00020	<0.00020	0.00053	-	0.00068	<0.00020	<0.00030	<0.00030	<0.00030	0.00048	0.00057	<0.00030	<0.00030	-	0.00042	0.00074
	1		l .	1	I										l	l .			<u> </u>	1	I	l .	l	

NOTES

- NOTES
 (1) BC Contaminated Sites Regulation (CSR) for Protection of Aquatic Life (AW) January 2019 Update, Schedule 3.2
 (2) BC Contaminated Sites Regulation (CSR) for protection of Drinking Water (DW) January 2019 Update, Schedule 3.2
 (3) BC Source Drinking Water Quality Guidelines, 2020
 (4) All criteria limits for Drinking Quality Guidelines based on Total Metal Concentration
 (5) BC Source Water Quality Guidelines apply to total metals but are included to be compared with disscolved metals parameters where total metals data is unavailable
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 10.0 °C
 (b) Limit dependent upon hardness.


 MAC = Maximum Acceptable Concentration
 AO = Aesthetic Objective

 * = Domestic Well, BC SDWQG Apply

APPLICABLE WATER QUALITY GUIDELINES

CSR-AW	BC Contaminated Sites Regulation Water Quality Guidelines for Protection of Aquatic Life (2019
CSR-DW	BC Contaminated Sites Regulation Water Quality Guidelines for Drinking Water (2019)
BCSDWQG	BC ENV Source Drinking Water Quality Guidelines for Drinking Water (2020)
BCWQG-AW	BC ENV Approved and Working Water Quality Guidelines for Protection of Aquatic Life (2019)
	Exceeds More Than One Guideline

Regional District of East Kootenay Hosmer Septage Treatment Ponds PRJ20050

APPENDIX A Hosmer Permit

Waste Management Branch Kootenay Region 310 Ward Street Nelson, B.C. V1L 5S4 Phone: 352-2211 Local 273, 305, or 339

YOUR FILE

OUR FILE PE-6901

JUL 1 3 1983

REGISTERED MAIL:

The Regional District of East Kootenay 19 - 24th Avenue South CRANBROOK, British Columbia V1C 3H8 JUL 15 1963

CRANBROOK BC:

Dear Sir:

Re: LETTER OF TRANSMITTAL

Enclosed is a copy of Permit No. PE-6901 issued under the provisions of the Waste Management Act in the name of Regional District of East Kootenay. Your attention is respectfully directed to the terms and conditions outlined in the Permit.

You will note that values have been expressed in the International Systems of Units (SI). These units are to be used in submitting monitoring results and any other information in connection with this Permit.

The administration of this Permit will be carried out by staff from our Regional Office located at 310 Ward Street, Nelson, British Columbia, VIL 5S4 (telephone 352-2211). Plans, data and reports pertinent to the Permit are to be submitted to the Regional Waste Manager at this address.

This Permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the Permittee.

Yours very truly,

MBaile

M.K. Baillargeon, P. Eng. Regional Waste Manager

MB:as

Enclosure

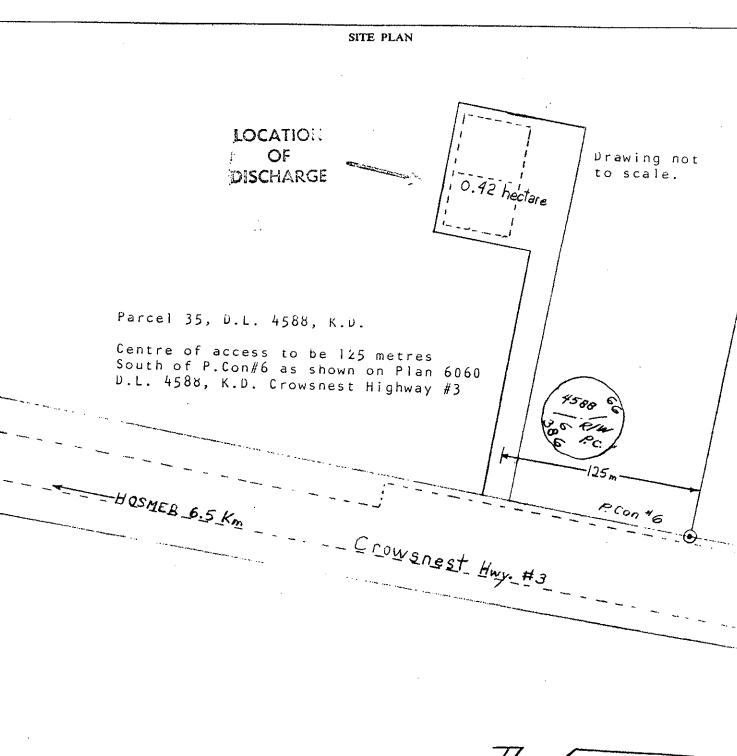
Front of Front of

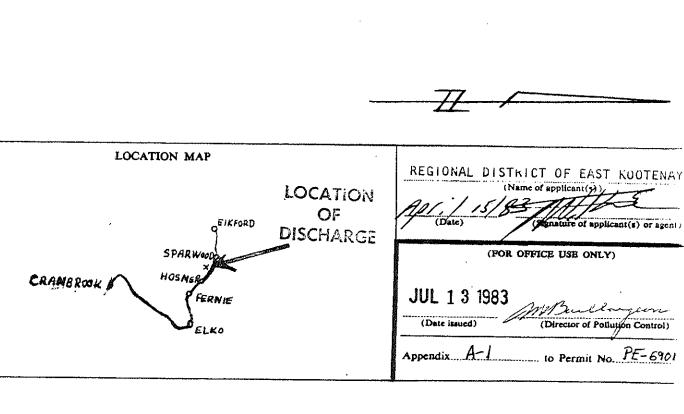
MINISTRY OF ENVIRONMENT

PERMIT

Under the Provisions of the Waste Management Act

The Regional Dis	strict of East Kootenay
19 - 24th Avenue South, Cranb	rook, British Columbia V1C 3H8
is hereby authorized to discharge Septic to	ank pumpage and sewage holding tank effluent
from domestic and other sources	
located in the Elk Valley	
tothe ground approximately 6.	5 kilometers north of Hosmer, British Columbia
	ms and conditions prescribed in the attached appendices
01, A-1, B-1, C-1	
	•
	,
	MBailageon
	Regional Waste Manager
JUL 1 3 1983 Date issued, 19	Permit No. PE-6901
Amendments dated, 19,	
, 19	
17	


MINISTRY OF ENVIRONMENT WASTE MANAGEMENT BRANCH


APPENDIX No. 01

to Permit No. PE-6901

E209899

(a)	The discharge of effluent to which this appendix is applicable is to land known and describe as 0.42 hectares on a portion of Parcel 35, District Lot 4588, Kootenay
	District (Source of operation)
	as shown on attached Appendix A-1
(b)	The quantity of effluent which may be discharged is an average of 22.7 cubic metres per day
(c)	The characteristics of the effluent shall be equivalent to or better than typical septic tank
	pumpage and typical holding tank effluent from residential, commercial and industrial sources
(d)	The works authorized are infiltration basins
	approximately as shown on the attached Appendix A-1
(e)	The land from which the effluent originates and to which this appendix is appurtenant isin the Elk Valley
	HIA VALLEY
(f)	Those works authorized and proposed must be completed and prop
	JUL 1 3 1983
	C 135UCU
Dat	e amended, 19
	, 19

MINISTRY OF ENVIRONMENT

Waste Management Branch

APPENDIX No. B-1

to Permit No. PE-6901

A. OPERATION

- Septic tank pumpage and sewage holding tank effluent are to be discharged to infiltration basins and dried before removal to a landfill site. The dried sludge is to be covered with inert material immediately after placement in the landfill.
- The minimum freeboard in the infiltration basins shall be 0.6 metre. The infiltration basin area is to be fenced and locked to prevent unauthorized access. Notice must be posted on the site to make the public aware of the type of facility being operated.

JUL 1 3 1983

Date issued , 19

Date amended , 19

, 19

MMBaclington
Regional Waste Manager

MINISTRY OF ENVIRONMENT:

WASTE MANAGEMENT BRANCH

APPENDIX No. C-1

to Permit No. PE-6901

MONITORING:

Monthly records of the quantity of septic tank pumpage and holding tank effluent discharged to the basins, in cubic metres per day, and the names of operators having access to the facility shall be maintained and retained for periodic inspection.

 MBaelle-po-Regional Waste Manager

Results Summary VA20A0149

Project HOSMER

Report To Ron Mickel, Eco/Logic Environmental

Client Sample ID		BCE STA	NDARDS	E265104	E265105	MW-6	MW-7
Date Sampled		DDINIKING	AOUATIO	5-Jan-20	5-Jan-20	5-Jan-20	5-Jan-20
ALS Sample ID	Units	DRINKING	AQUATIC	VA20A0149-001	VA20A0149-002	VA20A0149-003	VA20A0149-004
Physical Tests (Matrix: Water)							
alkalinity, total (as CaCO3)	mg/L	na	na	353	987	905	500
conductivity	μS/cm	700	na	1140	2870	2570	2250
hardness (as CaCO3), dissolved	mg/L	500	na	435	849	778	787
рН	pH units	6.5-8.5	6.5-9	7.93	7.43	7.31	7.24
solids, total suspended [TSS]	mg/L	na	na	<3.0	8.5	105	388
turbidity	NTU	na	na	0.8	25.9	110	282
Anions and Nutrients (Matrix: W	ater)						
ammonia, total (as N)	mg/L	0.68-27.72	na	4.54	55.7	55.3	24.9
chloride	mg/L	250	na	125	384	320	235
fluoride	mg/L	1.5	na	0.127	<0.400	<0.400	<0.400
nitrate (as N)	mg/L	10	200	16.8	0.759	5.82	81.1
sulfate (as SO4)	mg/L	500	100	7.69	7.84	<6.00	29.2

Dissolved Metals (Matrix: Water	·)	DRINKING	AQUATIC	E265104	E265105	MW-6	MW-7
aluminum, dissolved	mg/L	0.2	0.1	<0.0010	<0.0010	<0.0010	0.001
antimony, dissolved	mg/L	0.006	na	<0.00010	0.00015	0.00026	<0.00010
arsenic, dissolved	mg/L	0.025	0.005	<0.00010	0.0008	0.00141	0.00028
barium, dissolved	mg/L	1	na	0.401	1.04	0.518	0.859
beryllium, dissolved	mg/L	na	na	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	mg/L	na	na	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	mg/L	5	0.12	0.036	0.122	0.098	0.166
cadmium, dissolved	mg/L	0.005	0.2	0.000161	0.000414	0.000385	0.000303
calcium, dissolved	mg/L	na	na	136	257	254	252
cesium, dissolved	mg/L	na	na	0.000032	0.000104	0.000071	0.000044
chromium, dissolved	mg/L	na	1	0.00024	0.00014	0.00015	<0.00010
cobalt, dissolved	mg/L	na	na	0.0004	0.00611	0.00798	0.00308
copper, dissolved	mg/L	5	0.09	0.00112	0.00204	0.00372	0.00225
iron, dissolved	mg/L	0.03	na	<0.010	0.095	0.169	0.018
lead, dissolved	mg/L	0.01	3	0.000069	<0.000050	<0.000050	0.000051
lithium, dissolved	mg/L	na	na	0.0156	0.0538	0.0263	0.0461
magnesium, dissolved	mg/L	na	na	23	50.2	34.9	38.5
manganese, dissolved	mg/L	0.05	na	0.0383	1.08	1.32	0.902
mercury, dissolved	mg/L	0.001	0.0006	<0.0000050	0.0000124	<0.0000050	<0.0000050
molybdenum, dissolved	mg/L	0.25	2	0.000374	0.00164	0.0064	0.000965
nickel, dissolved	mg/L	0.025	na	0.00294	0.0323	0.0548	0.0101

phosphorus, dissolved	mg/L	na	na	<0.050	<0.050	<0.050	<0.050
potassium, dissolved	mg/L	na	na	7	42.5	61.4	25.4
rubidium, dissolved	mg/L	na	na	0.00321	0.0153	0.0329	0.0158
selenium, dissolved	mg/L	0.01	na	0.000482	0.00243	0.00124	0.00023
silicon, dissolved	mg/L	na	na	4	6.78	7.81	5.41
silver, dissolved	mg/L	na	na	<0.000010	<0.000010	0.000012	<0.000010
sodium, dissolved	mg/L	200	na	49.9	126	127	98.1
strontium, dissolved	mg/L	na	na	0.664	2.36	2.64	3.48
sulfur, dissolved	mg/L	500	na	3.01	4.4	2.53	11.3
tellurium, dissolved	mg/L	na	na	<0.00020	0.00027	0.00033	0.00033
thallium, dissolved	mg/L	na	na	0.000096	0.000411	0.000291	0.000116
thorium, dissolved	mg/L	na	na	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	mg/L	na	na	<0.00010	<0.00010	0.00011	<0.00010
titanium, dissolved	mg/L	na	na	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	mg/L	na	na	<0.00010	<0.00010	<0.00010	<0.00010
uranium, dissolved	mg/L	0.015	na	0.000594	0.00189	0.0021	0.000432
vanadium, dissolved	mg/L	na	na	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved	mg/L	na	0.03	0.0017	0.0048	0.0063	0.0053
zirconium, dissolved	mg/L	na	na	<0.00020	0.00051	0.0008	<0.00020

Qualifier Legend

DLDS

Results Summary VA20A4290

Project HOSMER

Report To Ron Mickel, Eco/Logic Environmental

Date Received 02-Apr-2020 08:25

Client Sample ID			BCE STA	NDARDS	E265104	E265105	MW-6	MW-7
Date Sampled			DRINKING	AQUATIC	1-Apr-20	1-Apr-20	1-Apr-20	1-Apr-20
Time Sampled			DRIINKIING	AQUATIC	14:30	15:00	15:30	16:00
Physical Tests	LDL	Units						
alkalinity, total (as CaCO3)	1.0	mg/L	na	na	360	842	726	420
conductivity	2.0	μS/cm	700	na	1270	2650	2170	975
hardness (as CaCO3), diss	0.60	mg/L	500	na	481	741	468	425
рН	0.10	pH units	6.5-8.5	6.5-9	7.40	7.47	7.15	7.41
solids total suspended [TSS]	3.0	mg/L	na	na	6.1	11.1	83.8	27.5
turbidity	0.10	NTU	na	na	1.76	3.50	35.4	10.6
Anions and Nutrients (Matrix: \	Water)							
ammonia, total (as N)	0.0050	mg/L	0.68-27.72	na	2.84	80.6	114	3.25
chloride	0.50	mg/L	250	na	167	339	237	56.8
fluoride	0.020	mg/L	1.5	na	<0.100	<0.400	<0.400	0.120
nitrate (as N)	0.0050	mg/L	10	200	7.53	7.31	<0.100	3.11
sulfate (as SO4)	0.30	mg/L	500	100	5.49	<6.00	<6.00	6.72

Bacteriological Tests (Matrix: \								
coliforms,[fecal]	1	CFU/100mL	<1	200	<1	15	>6000	1
coliforms, total	1	CFU/100mL	<1	200	<1	36	>6000	1

Dissolved Metals			DRINKING	AQUATIC	E265104	E265105	MW-6	MW-7
aluminum, dissolved	0.0010	mg/L	0.2	0.1	<0.0010	<0.0010	0.0056	0.0013
antimony, dissolved	0.00010	mg/L	0.006	na	<0.00010	0.00030	0.00035	<0.00010
arsenic, dissolved	0.00010	mg/L	0.025	0.005	0.00010	0.00085	0.0110	0.00040
barium, dissolved	0.00010	mg/L	1	na	0.413	0.755	0.424	0.383
beryllium, dissolved	0.000100	mg/L	na	na	<0.000100	<0.000100	<0.000100	<0.000100
bismuth, dissolved	0.000050	mg/L	na	na	<0.000050	<0.000050	<0.000050	<0.000050
boron, dissolved	0.010	mg/L	5	0.12	0.024	0.086	0.090	0.085
cadmium, dissolved	0.0000050	mg/L	0.005	0.2	0.000128	0.000608	0.000105	0.000351
calcium, dissolved	0.050	mg/L	na	na	147	222	146	136
cesium, dissolved	0.000010	mg/L	na	na	0.000025	0.000156	0.000070	0.000012
chromium, dissolved	0.00010	mg/L	na	1	0.00016	0.00013	0.00030	<0.00010
cobalt, dissolved	0.00010	mg/L	na	na	0.00023	0.00288	0.0196	0.00093
copper, dissolved	0.00020	mg/L	5	0.09	0.00111	0.00526	0.00276	0.00183
iron, dissolved	0.010	mg/L	0.03	na	<0.010	0.065	9.39	<0.010
lead, dissolved	0.000050	mg/L	0.01	3	0.000083	<0.000050	0.000608	<0.000050
lithium, dissolved	0.0010	mg/L	na	na	0.0139	0.0377	0.0206	0.0213
magnesium, dissolved	0.0050	mg/L	na	na	27.5	44.9	24.9	20.6
manganese, dissolved	0.00010	mg/L	0.05	na	0.0192	1.32	4.88	0.185
mercury, dissolved	0.0000050	mg/L	0.001	0.0006	<0.0000050	0.0000276	0.0000056	<0.0000050
molybdenum, dissolved	0.000050	mg/L	0.25	2	0.000314	0.00416	0.0104	0.000813

nickel, dissolved	0.00050	mg/L	0.025	na	0.00181	0.0352	0.0739	0.00384
phosphorus, dissolved	0.050	mg/L	na	na	<0.050	<0.050	0.441	<0.050
potassium, dissolved	0.050	mg/L	na	na	6.26	47.0	49.4	14.8
rubidium, dissolved	0.00020	mg/L	na	na	0.00351	0.0174	0.0374	0.00534
selenium, dissolved	0.000050	mg/L	0.01	na	0.000286	0.00163	0.00211	0.000617
silicon, dissolved	0.050	mg/L	na	na	3.66	5.77	7.34	3.96
silver, dissolved	0.000010	mg/L	na	na	<0.000010	0.000018	0.000029	<0.000010
sodium, dissolved	0.050	mg/L	200	na	62.1	137	91.6	34.0
strontium, dissolved	0.00020	mg/L	na	na	0.593	2.36	1.22	1.72
sulfur, dissolved	0.50	mg/L	500	na	2.98	1.35	2.56	3.58
tellurium, dissolved	0.00020	mg/L	na	na	<0.00020	0.00021	<0.00020	<0.00020
thallium, dissolved	0.000010	mg/L	na	na	0.000059	0.000585	0.000819	0.000044
thorium, dissolved	0.00010	mg/L	na	na	<0.00010	<0.00010	<0.00010	<0.00010
tin, dissolved	0.00010	mg/L	na	na	<0.00010	<0.00010	0.00033	<0.00010
titanium, dissolved	0.00030	mg/L	na	na	<0.00030	<0.00030	<0.00030	<0.00030
tungsten, dissolved	0.00010	mg/L	na	na	<0.00010	<0.00010	0.00024	<0.00010
uranium, dissolved	0.000010	mg/L	0.015	na	0.000551	0.00105	0.000993	0.000317
vanadium, dissolved	0.00050	mg/L	na	na	<0.00050	<0.00050	0.00240	<0.00050
zinc, dissolved	0.0010	mg/L	na	0.03	0.0020	0.0033	0.0056	0.0031
zirconium, dissolved	0.00020	mg/L	na	na	<0.00020	0.00053	0.00068	<0.00020

Qualifier Legend

DLA Detection Limit adjusted for required dilution.

DLDS Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

TNTC Too numerous to count (microbiology test). Overcrowded, confluent &/or non-identifiable microbial grov

Job Reference

Report To David Kvick, Sperling Hansen Associates Inc.

 Date Received
 23-Jul-2020 8:25

 Report Date
 29-Jul-2020 14:46

Report Version 1

Client Sample ID			E265104	E265105	E265106	MW-6
Date Sampled			22-Jul-2020	22-Jul-2020	22-Jul-2020	22-Jul-2020
Time Sampled			12:00	12:00	12:00	12:00
ALS Sample ID			L2478666-1	L2478666-2	L2478666-3	L2478666-4
Parameter	Lowest	Llaita	Water	Motor	Motor	Matar
Parameter	Detection Limit	Units	water	Water	Water	Water
Physical Tests (Water)						
Hardness (as CaCO3)	0.50	mg/L	244	251	275	280
Total Suspended Solids	1.0	mg/L	4.9	14.7	2840	136
Anions and Nutrients (Water)	• •			400		400
Alkalinity, Total (as CaCO3)	2.0	mg/L	203	198	202	406
Ammonia as N	0.0050	mg/L	0.198	0.346	0.0864	50.0
Bicarbonate (HCO3)	5.0	mg/L	247	241	246	495
Carbonate (CO3)	5.0	mg/L	<5.0	<5.0	<5.0	<5.0
Chloride (CI)	0.10	mg/L	10.1	2.69	2.06	86.8
Conductivity (EC)	2.0	uS/cm	395	411	405	1010
Fluoride (F)	0.020	mg/L	0.132	0.153	0.161	0.30
Hydroxide (OH)	5.0	mg/L	<5.0	<5.0	<5.0	<5.0
Nitrate and Nitrite (as N)	0.0051	mg/L	0.327	0.475	0.432	0.045
Nitrate (as N)	0.0050	mg/L	0.313	0.474	0.429	0.037
Nitrite (as N)	0.0010	mg/L	0.0140	0.0010	0.0022	0.0082
рН	0.10	рН	7.97	8.09	8.07	8.19
Orthophosphate-Dissolved (as P)	0.0010	mg/L	<0.0010	<0.0010	0.0019	0.0140
Sulfate (SO4)	0.050	mg/L	6.96	35.7	38.4	0.43
5						
Bacteriological Tests (Water)		MDNIMA		.4	:100	•
MPN - E. Coli	1	MPN/100mL	<1	<1	<100	6
Coliform Bacteria - Fecal	1	CFU/100mL	<1	<1	<100	100
MPN - Total Coliforms	1	MPN/100mL	6	<1	<100	260
Discolved Metals (Mater)						
Dissolved Metals (Water) Dissolved Metals Filtration Location		_	FIELD	FIELD	FIELD	FIELD
Dissolved Metals Filtration Location		-	FIELD	FIELD	FIELD	FIELD
	0.0010	- ma/l	<0.0010	0.0456	0.0229	0.0044
Aluminum (Al)-Dissolved	0.0010 0.00010	mg/L	<0.0010	<0.00010	<0.00010	0.0044
Antimony (Sb)-Dissolved	0.00010	mg/L	<0.00010	0.00010	0.00010	0.00012
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	0.00010	mg/L	0.185	0.00013	0.00017	0.0215
	0.00010	mg/L	<0.000020	<0.000020	<0.000020	<0.000020
Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved	0.000020	mg/L	<0.000020	<0.000020	<0.000020	<0.000020
Boron (B)-Dissolved	0.010	mg/L	<0.000	<0.000	<0.000	0.00050
. ,		mg/L				
Cadmium (Ca) Dissolved	0.000050	mg/L	0.0000752	0.0000778	0.0000345	0.0000094
Calcium (Ca)-Dissolved	0.050	mg/L	74.7	72.8	80.3	84.9
Chromium (Cr)-Dissolved	0.00010	mg/L	0.00015	0.00028	0.00013	0.00042
Cobalt (Co)-Dissolved	0.00010	mg/L	<0.00010	0.00017	<0.00010	0.00266
Copper (Cu)-Dissolved	0.00020	mg/L	0.00073	0.00075	0.00048	0.00036
Iron (Fe)-Dissolved	0.010	mg/L	<0.010	0.233	0.029	15.0
Lead (Pb)-Dissolved	0.000050	mg/L	<0.000050	0.00121	0.000088	0.000082
Lithium (Li)-Dissolved	0.0010	mg/L	0.0042	0.0052	0.0056	0.0154
Magnesium (Mg)-Dissolved	0.0050	mg/L	13.9	16.7	18.0	16.5
Manganese (Mn)-Dissolved	0.00010	mg/L	0.0157	0.115	0.00661	0.554
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.000584	0.000648	0.000830	0.00487

Job Reference

Report To David Kvick, Sperling Hansen Associates Inc.

Date Received 23-Jul-2020 8:25 **Report Date** 29-Jul-2020 14:46

Report Version

Client Sample ID	MW-7
Date Sampled	22-Jul-2020
Time Sampled	12:00
ALS Sample ID	L2478666-5

ALS Sample ID			L2478666-5
Parameter	Lowest Detection Limit	Units	Water
Physical Tests (Water)			
Hardness (as CaCO3)	0.50	mg/L	308
Total Suspended Solids	1.0	mg/L	353
Anions and Nutrients (Water)			
Alkalinity, Total (as CaCO3)	2.0	mg/L	451
Ammonia as N	0.0050	mg/L	97.4
Bicarbonate (HCO3)	5.0	mg/L	550
Carbonate (CO3)	5.0	mg/L	<5.0
Chloride (CI)	0.10	mg/L	117
Conductivity (EC)	2.0	uS/cm	1180
Fluoride (F)	0.020	mg/L	0.26
Hydroxide (OH)	5.0	mg/L	<5.0
Nitrate and Nitrite (as N)	0.0051	mg/L	<0.025
Nitrate (as N)	0.0050	mg/L	<0.025
Nitrite (as N)	0.0010	mg/L	0.0066
рН	0.10	рН	8.01
Orthophosphate-Dissolved (as P)	0.0010	mg/L	0.0011
Sulfate (SO4)	0.050	mg/L	0.28
Bacteriological Tests (Water)			
MPN - E. Coli	1	MPN/100mL	45
Coliform Bacteria - Fecal	1	CFU/100mL	<100

MPN - E. Coli	1	MPN/100mL	45
Coliform Bacteria - Fecal	1	CFU/100mL	<100
MPN - Total Coliforms	1	MPN/100mL	580

Dissolved Metals (Water)

Dissolved Metals Filtration Location		-	FIELD
Dissolved Metals Filtration Location		-	FIELD
Aluminum (AI)-Dissolved	0.0010	mg/L	0.0032
Antimony (Sb)-Dissolved	0.00010	mg/L	0.00011
Arsenic (As)-Dissolved	0.00010	mg/L	0.0186
Barium (Ba)-Dissolved	0.00010	mg/L	0.485
Beryllium (Be)-Dissolved	0.000020	mg/L	<0.000020
Bismuth (Bi)-Dissolved	0.000050	mg/L	<0.000050
Boron (B)-Dissolved	0.010	mg/L	0.092
Cadmium (Cd)-Dissolved	0.0000050	mg/L	0.0000083
Calcium (Ca)-Dissolved	0.050	mg/L	94.5
Chromium (Cr)-Dissolved	0.00010	mg/L	0.00031
Cobalt (Co)-Dissolved	0.00010	mg/L	0.00298
Copper (Cu)-Dissolved	0.00020	mg/L	0.00037
Iron (Fe)-Dissolved	0.010	mg/L	18.1
Lead (Pb)-Dissolved	0.000050	mg/L	<0.000050
Lithium (Li)-Dissolved	0.0010	mg/L	0.0193
Magnesium (Mg)-Dissolved	0.0050	mg/L	17.5
Manganese (Mn)-Dissolved	0.00010	mg/L	0.335
Molybdenum (Mo)-Dissolved	0.000050	mg/L	0.00984

Job Reference

Report To David Kvick, Sperling Hansen Associates Inc.

 Date Received
 23-Jul-2020 8:25

 Report Date
 29-Jul-2020 14:46

Report Version

Client Sample ID			E265104	E265105	E265106	MW-6
Date Sampled			22-Jul-2020	22-Jul-2020	22-Jul-2020	22-Jul-2020
Time Sampled			12:00	12:00	12:00	12:00
ALS Sample ID			L2478666-1	L2478666-2	L2478666-3	L2478666-4
Parameter	Lowest Detection Limit	Units	Water	Water	Water	Water
Nickel (Ni)-Dissolved	0.00050	mg/L	0.00093	0.00175	0.00052	0.00765
Phosphorus (P)-Dissolved	0.050	mg/L	< 0.050	<0.050	<0.050	1.96
Potassium (K)-Dissolved	0.10	mg/L	1.93	0.91	0.66	28.8
Selenium (Se)-Dissolved	0.000050	mg/L	0.000365	0.00209	0.00210	0.000294
Silicon (Si)-Dissolved	0.050	mg/L	2.94	2.76	2.78	6.16
Silver (Ag)-Dissolved	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	0.050	mg/L	8.88	2.49	2.56	45.4
Strontium (Sr)-Dissolved	0.00020	mg/L	0.161	0.176	0.167	1.03
Sulfur (S)-Dissolved	0.50	mg/L	4.82	14.5	16.2	2.34
Thallium (TI)-Dissolved	0.000010	mg/L	0.000035	0.000031	<0.000010	<0.000010
Tin (Sn)-Dissolved	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00013
Titanium (Ti)-Dissolved	0.00030	mg/L	< 0.00030	0.00087	<0.00030	0.00049
Uranium (U)-Dissolved	0.000010	mg/L	0.000459	0.000596	0.000716	0.000023
Vanadium (V)-Dissolved	0.00050	mg/L	<0.00050	<0.00050	<0.00050	0.00245
Zinc (Zn)-Dissolved	0.0010	mg/L	0.0017	0.0031	0.0019	0.0034
Zirconium (Zr)-Dissolved	0.00030	mg/L	<0.00030	<0.00030	<0.00030	0.00048

Qualifier Legend

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Job Reference

Report To David Kvick, Sperling Hansen Associates Inc.

 Date Received
 23-Jul-2020 8:25

 Report Date
 29-Jul-2020 14:46

Report Version 1

 Client Sample ID
 MW-7

 Date Sampled
 22-Jul-2020

 Time Sampled
 12:00

 ALS Sample ID
 L2478666-5

Lowest Detection Limit	Units	Water
0.00050	mg/L	0.00998
0.050	mg/L	0.312
0.10	mg/L	34.6
0.000050	mg/L	0.000214
0.050	mg/L	6.53
0.000010	mg/L	<0.000010
0.050	mg/L	57.9
0.00020	mg/L	1.26
0.50	mg/L	2.53
0.000010	mg/L	<0.000010
0.00010	mg/L	0.00010
0.00030	mg/L	<0.00030
0.000010	mg/L	0.000032
0.00050	mg/L	0.00160
0.0010	mg/L	0.0018
0.00030	mg/L	0.00057
	Detection Limit 0.00050 0.050 0.10 0.000050 0.050 0.000010 0.050 0.00020 0.50 0.000010 0.00010 0.00030 0.000010 0.00050 0.00050 0.00010	Detection Limit Units 0.00050 mg/L 0.050 mg/L 0.10 mg/L 0.000050 mg/L 0.050 mg/L 0.00010 mg/L 0.00020 mg/L 0.50 mg/L 0.00020 mg/L 0.00010 mg/L 0.00030 mg/L 0.00050 mg/L 0.00050 mg/L 0.0010 mg/L

Qualifier Legend

DLHC Detection Limit Raised: Dilution required due to DLM Detection Limit Adjusted due to sample matrix

20050 HOSMER Job Reference

Report To
Date Received Scott Garthwaite, Sperling Hansen Associates Inc. 22-Oct-2020 8:50

Report Date 29-Oct-2020 14:33

Report Version

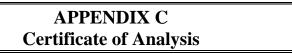
E265104 E265105 Client Sample ID MW6 MW7 Date Sampled 21-Oct-2020 21-Oct-2020 21-Oct-2020 21-Oct-2020 Time Sampled 8:00 8:00 8:00 8:00 ALS Sample ID L2520199-1 L2520199-2 L2520199-3 L2520199-4 Lowest Parameter Units Water Water Water Water Detection Limit Physical Tests (Water) Hardness (as CaCO3) 0.50 292 mg/L 361 456 481 Total Suspended Solids 9.2 146 87.0 2650 Anions and Nutrients (Water) Alkalinity, Total (as CaCO3) 2.0 mg/L 304 385 457 495 Ammonia as N Bicarbonate (HCO3) 0.50 8.01 469 3.88 53 558 56.0 603 mg/L 371 ma/L Carbonate (CO3) 5.0 mg/L <5.0 <5.0 <5.0 <5.0 Chloride (CI) 0.10 59.2 70.7 217 120 mg/L Conductivity (EC) 1530 1140 Fluoride (F) 0.020 mg/L 0.171 0.23 0.33 0.44 5.0 0.0051 <5.0 4.19 Hydroxide (OH) mg/L <5.0 <5.0 <5.0 Nitrate and Nitrite (as N) 0.536 16.7 0.348 ma/L Nitrate (as N) 0.0050 4.18 0.529 0.328 mg/L Nitrite (as N) 0.0010 0.0071 0.0068 0.0197 mg/L 0.138 0.10 0.050 7.93 5.13 pН 7.90 17.0 7.96 24.1 pH Sulfate (SO4) ma/L 0.63 **Bacteriological Tests (Water)** MPN - E. Coli MPN/100mL Coliform Bacteria - Fecal CFU/100mL <2 <2 <100 <1 MPN - Total Coliforms MPN/100mL <100 Dissolved Metals (Water) Dissolved Mercury Filtration Location FIELD FIELD FIELD FIELD FIELD Dissolved Metals Filtration Location FIELD FIELD Dissolved Metals Filtration Location FIELD FIELD Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved 0.0010 0.00010 0.0010 0.0021 0.0058 0.00024 0.0022 mg/L mg/L 0.00030 0.00010 0.00010 Arsenic (As)-Dissolved mg/L 0.00014 0.00039 0.00356 0.0170 Barium (Ba)-Dissolved mg/L 0.353 0.352 0.365 0.458 Beryllium (Be)-Dissolved Bismuth (Bi)-Dissolved 0.000020 <0.000020 <0.000020 <0.000020 <0.000020 0.000050 <0.000050 <0.000050 <0.000050 <0.000050 ma/L Boron (B)-Dissolved Cadmium (Cd)-Dissolved 0.010 0.0000050 0.038 0.132 0.0000675 0.105 0.0000183 mg/L 0.035 0.000368 mg/L Calcium (Ca)-Dissolved Chromium (Cr)-Dissolved 0.050 0.00010 111 <0.00010 136 <0.00010 152 0.00015 89.8 0.00022 mg/L ma/L 0.00010 0.00020 Cobalt (Co)-Dissolved mg/L 0.00060 0.00199 0.00810 0.00367 0.00046 Copper (Cu)-Dissolved mg/L 0.00130 0.00048 0.00195 Iron (Fe)-Dissolved Lead (Pb)-Dissolved 0.010 0.012 mg/L 0.000135 0.000050 <0.000050 0.000068 mg/L 0.000098 Lithium (Li)-Dissolved 0.0010 0.0050 0.0114 0.0146 0.0265 0.0186 Magnesium (Mg)-Dissolved 24.9 ma/L 20.3 28.3 16.3 Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved 0.00010 0.0000050 mg/L 0.441 0.930 0.437 <0.000050 < 0.0000050 < 0.0000050 < 0.0000050 mg/L Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved 0.000050 0.00050 0.000819 0.00112 0.00934 0.00999 0.0112 0.00840 mg/L ma/L 0.00512 Phosphorus (P)-Dissolved Potassium (K)-Dissolved 0.050 0.10 mg/L <0.050 <0.050 <0.050 0.071 6.70 6.24 mg/L 30.4 28.2 Selenium (Se)-Dissolved 0.000050 0.000310 0.000995 0.000758 0.000353 mg/L Silicon (Si)-Dissolved 0.050 mg/L 3.99 4.68 7.11 6.37 Silver (Ag)-Dissolved 0.000010 < 0.000010 < 0.000010 <0.000010 <0.000010 Sodium (Na)-Dissolved 0.050 27.6 ma/L 18.5 75.4 56.0 Strontium (Sr)-Dissolved Sulfur (S)-Dissolved 0.00020 0.498 0.830 1.74 1.39 mg/L 7.08 7.49 < 0.50 mg/L Thallium (TI)-Dissolved Tin (Sn)-Dissolved 0.000010 0.00010 0.000143 0.000113 0.000141 0.00016 <0.000010 <0.00010 mg/L ma/L Titanium (Ti)-Dissolved 0.00030 0.000010 <0.00030 0.000527 <0.00030 0.000770 <0.00030 <0.00030 mg/L Uranium (U)-Dissolved 0.00162 0.000101 mg/L Vanadium (V)-Dissolved 0.00050 <0.00050 <0.00050 0.00058 0.00229 mg/L Zinc (Zn)-Dissolved 0.0010 0.0051 0.0134 mg/L 0.0077 0.0030

Qualifier Legend

Zirconium (Zr)-Dissolved

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

0.00030


DLM DLA Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). Detection Limit adjusted for required dilution

<0.00030

<0.00030

0.00042

0.00074

Sperling Hansen Associates Inc.

ATTN: David Kvick

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 23-JUL-20

Report Date: 29-JUL-20 14:46 (MT)

Version: FINAL

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2478666
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2478666 CONTD.... PAGE 2 of 5

PAGE 2 of 5 29-JUL-20 14:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2478666-1 WATER 22-JUL-20 12:00 E265104	L2478666-2 WATER 22-JUL-20 12:00 E265105	L2478666-3 WATER 22-JUL-20 12:00 E265106	L2478666-4 WATER 22-JUL-20 12:00 MW-6	L2478666-5 WATER 22-JUL-20 12:00 MW-7
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	244	251	275	280	308
	Total Suspended Solids (mg/L)	4.9	14.7	2840	136	353
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	203	198	202	406	451
	Ammonia as N (mg/L)	0.198	0.346	0.0864	50.0 DLHC	97.4
	Bicarbonate (HCO3) (mg/L)	247	241	246	495	550
	Carbonate (CO3) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Chloride (CI) (mg/L)	10.1	2.69	2.06	86.8	117
	Conductivity (EC) (uS/cm)	395	411	405	1010	1180
	Fluoride (F) (mg/L)	0.132	0.153	0.161	0.30 DLHC	0.26
	Hydroxide (OH) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Nitrate and Nitrite (as N) (mg/L)	0.327	0.475	0.432	0.045	<0.025
	Nitrate (as N) (mg/L)	0.313	0.474	0.429	0.037	<0.025
	Nitrite (as N) (mg/L)	0.0140	0.0010	0.0022	0.0082	0.0066
	pH (pH)	7.97	8.09	8.07	8.19	8.01
	Orthophosphate-Dissolved (as P) (mg/L)	<0.0010	<0.0010	0.0019	0.0140	0.0011
	Sulfate (SO4) (mg/L)	6.96	35.7	38.4	0.43	0.28
Bacteriological Tests	MPN - E. Coli (MPN/100mL)	<1	<1	<100 DLM	6	45
	Coliform Bacteria - Fecal (CFU/100mL)	<1	<1	<100 DLM	100 DLM	<100 DLM
	MPN - Total Coliforms (MPN/100mL)	6	<1	<100 DLM	260	580
Dissolved Metals	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	<0.0010	0.0456	0.0229	0.0044	0.0032
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	0.00012	0.00011
	Arsenic (As)-Dissolved (mg/L)	<0.00010	0.00015	0.00017	0.0215	0.0186
	Barium (Ba)-Dissolved (mg/L)	0.185	0.128	0.129	0.289	0.485
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	0.085	0.092
	Cadmium (Cd)-Dissolved (mg/L)	0.0000752	0.0000778	0.0000345	0.0000094	0.0000083
	Calcium (Ca)-Dissolved (mg/L)	74.7	72.8	80.3	84.9	94.5
	Chromium (Cr)-Dissolved (mg/L)	0.00015	0.00028	0.00013	0.00042	0.00031
	Cobalt (Co)-Dissolved (mg/L)	<0.00010	0.00017	<0.00010	0.00266	0.00298
	Copper (Cu)-Dissolved (mg/L)	0.00073	0.00075	0.00048	0.00036	0.00037
	Iron (Fe)-Dissolved (mg/L)	<0.010	0.233	0.029	15.0	18.1
	Lead (Pb)-Dissolved (mg/L)	<0.000050	0.00121	0.000088	0.000082	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0042	0.0052	0.0056	0.0154	0.0193
	Magnesium (Mg)-Dissolved (mg/L)	13.9	16.7	18.0	16.5	17.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2478666 CONTD....

PAGE 3 of 5 29-JUL-20 14:46 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2478666-1 WATER 22-JUL-20 12:00 E265104	L2478666-2 WATER 22-JUL-20 12:00 E265105	L2478666-3 WATER 22-JUL-20 12:00 E265106	L2478666-4 WATER 22-JUL-20 12:00 MW-6	L2478666-5 WATER 22-JUL-20 12:00 MW-7
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	0.0157	0.115	0.00661	0.554	0.335
	Molybdenum (Mo)-Dissolved (mg/L)	0.000584	0.000648	0.000830	0.00487	0.00984
	Nickel (Ni)-Dissolved (mg/L)	0.00093	0.00175	0.00052	0.00765	0.00998
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	1.96	0.312
	Potassium (K)-Dissolved (mg/L)	1.93	0.91	0.66	28.8	34.6
	Selenium (Se)-Dissolved (mg/L)	0.000365	0.00209	0.00210	0.000294	0.000214
	Silicon (Si)-Dissolved (mg/L)	2.94	2.76	2.78	6.16	6.53
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	8.88	2.49	2.56	45.4	57.9
	Strontium (Sr)-Dissolved (mg/L)	0.161	0.176	0.167	1.03	1.26
	Sulfur (S)-Dissolved (mg/L)	4.82	14.5	16.2	2.34	2.53
	Thallium (TI)-Dissolved (mg/L)	0.000035	0.000031	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	0.00013	0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	0.00087	<0.00030	0.00049	<0.00030
	Uranium (U)-Dissolved (mg/L)	0.000459	0.000596	0.000716	0.000023	0.000032
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	0.00245	0.00160
	Zinc (Zn)-Dissolved (mg/L)	0.0017	0.0031	0.0019	0.0034	0.0018
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	0.00048	0.00057

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

PAGE 4 of 5 29-JUL-20 14:46 (MT)

Version: FINAL

Qualifiers for Sample Submission Listed:

Qualifier Description

UIC Unreliable: Improper Container - ROUTINE BOTTLE RECEIVED FOR FECAL AND E. COLI

QC Samples with Qualifiers & Comments:

QC Type Description Parameter Qualifier Applies to Sample Number(s)

Qualifiers for Individual Parameters Listed:

Qualifier Description

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

BE-D-L-CCMS-CL Water Diss. Be (low) in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents.

Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

PO4-DO-L-COL-CL Water Orthophosphate-Dissolved (as P) APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.

SO4-L-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TC-EC-MPN-CL Water Total Coliforms and E. Coli by MPN APHA METHOD 9223

Reference Information

L2478666 CONTD....

PAGE 5 of 5

29-JUL-20 14:46 (MT)

Version: FINAL

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The

sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

TSS-L-CL

Water

Total Suspended Solids

APHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2478666 Report Date: 29-JUL-20 Page 1 of 6

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: David Kvick

Test Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BE-D-L-CCMS-CL	Water							
Batch R5167403								
WG3370662-6 LCS		TMRM						
Beryllium (Be)-Dissolved	d		99.4		%		80-120	28-JUL-20
WG3370662-5 MB	4		-0 000030	1	ma/l		0.00000	00 1111 00
Beryllium (Be)-Dissolved	1		<0.000020)	mg/L		0.00002	28-JUL-20
CL-L-IC-N-CL	Water							
Batch R5166746								
WG3370070-11 DUP		L2478666-1 10.1	10.4		ma/l	0.0	20	00 "" 00
Chloride (Cl)		10.1	10.1		mg/L	0.3	20	23-JUL-20
WG3370070-10 LCS Chloride (Cl)			103.2		%		QE 11E	22 1111 20
			100.2		/0		85-115	23-JUL-20
WG3370070-9 MB Chloride (Cl)			<0.10		mg/L		0.1	23-JUL-20
WG3370070-12 MS		L2478666-1			J			20 302 20
Chloride (Cl)		L2-7 0000-1	102.7		%		75-125	23-JUL-20
-L-IC-CL	Water							
-L-IC-CL Batch R5166746	Haidi							
WG3370070-11 DUP		L2478666-1						
Fluoride (F)		0.132	0.131		mg/L	0.3	20	23-JUL-20
WG3370070-10 LCS								
Fluoride (F)			100.7		%		85-115	23-JUL-20
WG3370070-9 MB								
Fluoride (F)			<0.020		mg/L		0.02	23-JUL-20
WG3370070-12 MS		L2478666-1						
Fluoride (F)			100.5		%		75-125	23-JUL-20
FCC-MF-CL	Water							
Batch R5166750								
WG3370086-7 MB								
Coliform Bacteria - Feca	al		<1		CFU/100mL		1	23-JUL-20
WG3370086-9 MB					OFILITION 1			
Coliform Bacteria - Feca	al .		<1		CFU/100mL		1	23-JUL-20
MET-D-CCMS-CL	Water							
Batch R5167403								
WG3370662-6 LCS		TMRM			0.4			
Aluminum (Al)-Dissolved			109.3		%		80-120	28-JUL-20
Antimony (Sb)-Dissolved	d		103.6		%		80-120	28-JUL-20
Arsenic (As)-Dissolved			106.1		%		80-120	28-JUL-20
Barium (Ba)-Dissolved			113.5		%		80-120	28-JUL-20

Workorder: L2478666 Report Date: 29-JUL-20 Page 2 of 6

Test Mar	rix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL Wa	ter						
Batch R5167403							
WG3370662-6 LCS	TMRM	404.0		0/			
Bismuth (Bi)-Dissolved		104.3		%		80-120	28-JUL-20
Boron (B)-Dissolved		95.5		%		80-120	28-JUL-20
Cadmium (Cd)-Dissolved		105.6		%		80-120	28-JUL-20
Calcium (Ca)-Dissolved		104.3		%		80-120	28-JUL-20
Chromium (Cr)-Dissolved		104.3		%		80-120	28-JUL-20
Cobalt (Co)-Dissolved		105.2		%		80-120	28-JUL-20
Copper (Cu)-Dissolved		106.3		%		80-120	28-JUL-20
Iron (Fe)-Dissolved		100.2		%		80-120	28-JUL-20
Lead (Pb)-Dissolved		107.7		%		80-120	28-JUL-20
Lithium (Li)-Dissolved		98.9		%		80-120	28-JUL-20
Magnesium (Mg)-Dissolved		111.9		%		80-120	28-JUL-20
Manganese (Mn)-Dissolved		107.4		%		80-120	28-JUL-20
Molybdenum (Mo)-Dissolved		101.0		%		80-120	28-JUL-20
Nickel (Ni)-Dissolved		103.3		%		80-120	28-JUL-20
Phosphorus (P)-Dissolved		113.6		%		70-130	28-JUL-20
Potassium (K)-Dissolved		110.1		%		80-120	28-JUL-20
Selenium (Se)-Dissolved		98.3		%		80-120	28-JUL-20
Silicon (Si)-Dissolved		101.6		%		60-140	28-JUL-20
Silver (Ag)-Dissolved		102.4		%		80-120	28-JUL-20
Sodium (Na)-Dissolved		104.0		%		80-120	28-JUL-20
Strontium (Sr)-Dissolved		102.3		%		80-120	28-JUL-20
Sulfur (S)-Dissolved		103.4		%		80-120	28-JUL-20
Thallium (TI)-Dissolved		113.3		%		80-120	28-JUL-20
Tin (Sn)-Dissolved		100.7		%		80-120	28-JUL-20
Titanium (Ti)-Dissolved		104.9		%		80-120	28-JUL-20
Uranium (U)-Dissolved		105.4		%		80-120	28-JUL-20
Vanadium (V)-Dissolved		106.6		%		80-120	28-JUL-20
Zinc (Zn)-Dissolved		103.7		%		80-120	28-JUL-20
Zirconium (Zr)-Dissolved		93.4		%		80-120	28-JUL-20
WG3370662-5 MB							
Aluminum (Al)-Dissolved		<0.0010		mg/L		0.001	28-JUL-20
Antimony (Sb)-Dissolved		<0.00010		mg/L		0.0001	28-JUL-20
Arsenic (As)-Dissolved		<0.00010		mg/L		0.0001	28-JUL-20
Barium (Ba)-Dissolved		<0.00010		mg/L		0.0001	28-JUL-20

Workorder: L2478666 Report Date: 29-JUL-20 Page 3 of 6

Test Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL Water						
Batch R5167403						
WG3370662-5 MB		-0.000050	a /I		0.00005	00 1111 00
Bismuth (Bi)-Dissolved		<0.000050 <0.010	mg/L		0.00005	28-JUL-20
Boron (B)-Dissolved			mg/L		0.01	28-JUL-20
Cadmium (Cd)-Dissolved		<0.0000050	mg/L		0.000005	28-JUL-20
Calcium (Ca)-Dissolved		<0.050	mg/L		0.05	28-JUL-20
Chromium (Cr)-Dissolved		<0.00010	mg/L		0.0001	28-JUL-20
Cobalt (Co)-Dissolved		<0.00010	mg/L		0.0001	28-JUL-20
Copper (Cu)-Dissolved		<0.00020	mg/L		0.0002	28-JUL-20
Iron (Fe)-Dissolved		<0.010	mg/L		0.01	28-JUL-20
Lead (Pb)-Dissolved		<0.000050	mg/L		0.00005	28-JUL-20
Lithium (Li)-Dissolved		<0.0010	mg/L		0.001	28-JUL-20
Magnesium (Mg)-Dissolved		<0.0050	mg/L		0.005	28-JUL-20
Manganese (Mn)-Dissolved		<0.00010	mg/L		0.0001	28-JUL-20
Molybdenum (Mo)-Dissolved		<0.000050	mg/L		0.00005	28-JUL-20
Nickel (Ni)-Dissolved		<0.00050	mg/L		0.0005	28-JUL-20
Phosphorus (P)-Dissolved		<0.050	mg/L		0.05	28-JUL-20
Potassium (K)-Dissolved		<0.050	mg/L		0.05	28-JUL-20
Selenium (Se)-Dissolved		<0.000050	mg/L		0.00005	28-JUL-20
Silicon (Si)-Dissolved		<0.050	mg/L		0.05	28-JUL-20
Silver (Ag)-Dissolved		<0.000010	mg/L		0.00001	28-JUL-20
Sodium (Na)-Dissolved		<0.050	mg/L		0.05	28-JUL-20
Strontium (Sr)-Dissolved		<0.00020	mg/L		0.0002	28-JUL-20
Sulfur (S)-Dissolved		<0.50	mg/L		0.5	28-JUL-20
Thallium (TI)-Dissolved		<0.000010	mg/L		0.00001	28-JUL-20
Tin (Sn)-Dissolved		<0.00010	mg/L		0.0001	28-JUL-20
Titanium (Ti)-Dissolved		<0.00030	mg/L		0.0003	28-JUL-20
Uranium (U)-Dissolved		<0.000010	mg/L		0.00001	28-JUL-20
Vanadium (V)-Dissolved		<0.00050	mg/L		0.0005	28-JUL-20
Zinc (Zn)-Dissolved		<0.0010	mg/L		0.001	28-JUL-20
Zirconium (Zr)-Dissolved		<0.00020	mg/L		0.0002	28-JUL-20
NH3-L-F-CL Water						
Batch R5171059						
WG3372159-26 LCS		00.4	04			
Ammonia as N		99.1	%		85-115	28-JUL-20
WG3372159-25 MB						

Workorder: L2478666 Report Date: 29-JUL-20 Page 4 of 6

								0
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-L-F-CL	Water							
Batch R5171059 WG3372159-25 MB Ammonia as N			<0.0050		mg/L		0.005	28-JUL-20
NO2-L-IC-N-CL	Water							
Batch R5166746 WG3370070-11 DUP Nitrite (as N)		L2478666-1 0.0140	0.0141		mg/L	0.7	20	23-JUL-20
WG3370070-10 LCS Nitrite (as N)			102.2		%		90-110	23-JUL-20
WG3370070-9 MB Nitrite (as N)			<0.0010		mg/L		0.001	23-JUL-20
WG3370070-12 MS Nitrite (as N)		L2478666-1	101.0		%		75-125	23-JUL-20
NO3-L-IC-N-CL	Water							
Batch R5166746 WG3370070-11 DUP Nitrate (as N)		L2478666-1 0.313	0.311		mg/L	0.5	20	23-JUL-20
WG3370070-10 LCS Nitrate (as N)			103.6		%		90-110	23-JUL-20
WG3370070-9 MB Nitrate (as N)			<0.0050		mg/L		0.005	23-JUL-20
WG3370070-12 MS Nitrate (as N)		L2478666-1	102.9		%		75-125	23-JUL-20
PH/EC/ALK-CL	Water							
Batch R5167219 WG3370559-8 LCS			00.4		0/		00.440	
Conductivity (EC) Alkalinity, Total (as CaCo	O3/		98.4 98.3		%		90-110	24-JUL-20
	O3)		90.3		70		85-115	24-JUL-20
WG3370559-7 MB Conductivity (EC)			<2.0		uS/cm		2	24-JUL-20
Bicarbonate (HCO3)			<5.0		mg/L		5	24-JUL-20
Carbonate (CO3)			<5.0		mg/L		5	24-JUL-20
Hydroxide (OH)			<5.0		mg/L		5	24-JUL-20
Alkalinity, Total (as CaCo	O3)		<2.0		mg/L		2	24-JUL-20
PO4-DO-L-COL-CL	Water							

Workorder: L2478666

Report Date: 29-JUL-20

Page 5 of 6

est M	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PO4-DO-L-COL-CL W	/ater							
Batch R5166881								
WG3370100-2 LCS								
Orthophosphate-Dissolved	(as P)		100.5		%		80-120	24-JUL-20
WG3370100-1 MB								
Orthophosphate-Dissolved	(as P)		<0.0010		mg/L		0.001	24-JUL-20
SO4-L-IC-N-CL W	/ater							
Batch R5166746								
WG3370070-11 DUP		L2478666-1						
Sulfate (SO4)		6.96	6.99		mg/L	0.4	20	23-JUL-20
WG3370070-10 LCS								
Sulfate (SO4)			104.3		%		85-115	23-JUL-20
WG3370070-9 MB								
Sulfate (SO4)			< 0.050		mg/L		0.05	23-JUL-20
WG3370070-12 MS		L2478666-1						
Sulfate (SO4)			103.2		%		75-125	23-JUL-20
TC-EC-MPN-CL W	/ater							
Batch R5166738								
WG3370064-7 MB								
MPN - E. Coli			<1		MPN/100mL		1	23-JUL-20
MPN - Total Coliforms			<1		MPN/100mL		1	23-JUL-20
TSS-L-CL W	/ater							
Batch R5169563								
WG3370699-8 LCS								
Total Suspended Solids			98.0		%		85-115	27-JUL-20
WG3370699-7 MB								
Total Suspended Solids			<1.0		mg/L		1	27-JUL-20

Workorder: L2478666 Report Date: 29-JUL-20 Page 6 of 6

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

L2478666-COFC

COC Number: 15 -

Page

of

nuironmental Canada Toll Free: 1 800 668 9878

	www.alsglobal.com																		
Report To	Contact and company name below will appear on the final report		Report Format	/ Distribution		Select	Service I	Level Bel	ow - Plea	ase conf	inn all E	&P TAT	s with y	our AM	l - surchar	rges wi	ill apply		
Company:	Sperling Hansen Associates Inc.	Select Report F	ormat: 🗾	D EXCEL D	DD (DIGITAL)		Re	gular	[R] [√ Sta	ndard T	AT if re	ceived	by 3 pr	m - busir	ness da	ays - no su	ırcharge	s apply
Contact:	David Kvick	Quality Control	(QC) Report with F	Report 🗹	☐ NO	y Jays}	4	day [P	4]			ſζΥ	1	Busin	ness da	ay [E	1]	C]
Phone:	604-813-8476	Compare Resu	lts to Criteria on Report	- provide details belo	ow if box checked	10RIT	3	day [P	3]			EMERGENCY	s	ame I	Day, W	leeke	end or	_	-
	Company address below will appear on the final report	Select Distribut	ion: 🖸 EMAIL	MAIL [FAX	PRIORITY (Business Days)	2	day [P	2]			EME	;	Statut	tory ho	oliday	y [E0]		j
Street:	8-1225 East Keith Road	Email 1 or Fax					Date a	nd Time	Require	ed for a	II E&P	TATs:			a	d-m	nm-yy ^h	nimm	
City/Province:	North Vancouver B.C.,	Email 2	_		. —	For tes	ts that c	an not be	perform	ed acco	rding to	the ser	rice leve	el select	ted, you v	vill be (contacted.		
Postal Code:	V7J 1J3	Email 3				<u> </u>					/	Analy	sis R	eques	at .				
Invoice To	Same as Report To		Invoice Di	stribution		<u></u>	Indi	cate Filt	ered (F)	, Preser	ved (P)	or Filte	red an	d Prese	erved (F/	P) beid	ow	┙	
_	Copy of Invoice with Report	Select Invoice I	Distribution: ☑ EM	MAIL MAIL] FAX			1.	$\overline{}$				1		L	$oldsymbol{\perp}$		┙	
Company:		Email 1 or Fax						}	2 2	· >			£	.		.			
Contact:		Email 2				1			3	,		7	form						S
	Project Information	Oil	and Gas Require	d Fields (client	use)				ह	4			- 1	.					aine
ALS Account #	/ Quote #: Q80923	AFE/Cost Center;		PO#		>			<u></u>	Ž		Q	৾ৢঽ	i					ont
Job #:		Major/Minor Code:		Routing Code:		_ ا	>	(NY	17									ပိုင
PO / AFE:		Requisitioner:				1,2)	7		(Ka)	1	1	10		1) je
LSD:		Location: HC	smer			ટ્રે. [,		1,0	A(Ą		150						Number of Containers
ALS Lab Wor	k Order# (lab use only)	ALS Contact:	Deen	Sampler:	Solman	Conductiv;	I	ONS	mmonla	6	S	Metals	4/1						Z
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Type	િફે	ھ ا	Z		70	(5)	Ġ	12)	.					
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	7	ľ	Y	V	7	1	7	12						•
	E265104 (Fecal in Standard	bottle)	22-07-20	>		×	*	λ	×	χ	X	×	×					4	4
	E265/05	,	31			~	*	×	¥	λ	×	٨	~					1	+
	E265106		>1	1		>	_	×	*	X	×	χ	×					4	+
	MW-6		11			>	~	*	یر	×	×	×	×					1	
	MW-7		u			~	×	Х	7	¥	×	*	٠,			\top		1	+
	7.00			-		 		•						\neg				\top	
					<u> </u>								\dashv		+	-		_	
					-	\vdash								\dashv	-	+		+-	
				 	 								\dashv	\rightarrow	+				
					+		<u> </u>								+	-+	-+	+	
				<u> </u>	 	 						-			\dashv	+		+	
				-		 								\dashv	+	$-\!\!\!+$		+	
						ļ			CAME	. F. C.	NIDIT		S 05	CEIV	/ED (la	h us	e only)		
Drinking	Water (DW) Samples ¹ (client use)		idd on report by clic tronic COC only)	king on the drop-	down list below	Froze	20		SAMP	LEC				vation			□ N	`	
Are samples take	en from a Regulated DW System?					1	acks	П		ubee	•				tact Y				Ħ
	☑ NO						acks ng Initi	_		upes	130	Cusa	Juy Ju	, GI 1110	uot 1	03	ш	•	لا
Are samples for	human drinking water use?					—		AL COC		MPERA	TURE	3 °C			FINAL C	OOLE	R TEMPE	RATUR	ES °C
	☑ NO						1	,											
	SHIPMENT RELEASE (client use)	T	INITIAL SHIPMEN	T RECEPTION	(lab use only)		\mathcal{T}_1			FIN	IAL S	HIPM	ENT F	RECE	PTION	(lab	use only	<i>'</i>)	
Released by:	Solucion Date 22/7/20 Time:	Received by:	an.	Date: /	2//20	Time	4 5	Rece	ived by				-	Date:				Tim	ie:
DEEED TO BACK			110-		1/2/2	X	$\sqrt{\sum}$	000										يل	TOBER 2015 FRONT
DEFED IVENUE	. PALS SUPPLIED ALS LUCATIONS AND SAMOUND INCOMEDIMATION	,	~ ~ \\/LII		, v CODV 🛩 YELL	CTVV -	1 1 1 H N 7	COPY										CCT	LUDGE ZUIS ERONT

Sperling Hansen Associates Inc.

ATTN: Scott Garthwaite #8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 22-OCT-20

Report Date: 29-OCT-20 14:33 (MT)

Version: FINAL

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2520199

Project P.O. #:

NOT SUBMITTED

Job Reference:

20050 HOSMER

C of C Numbers: Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2520199 CONTD....

PAGE 2 of 5 29-OCT-20 14:33 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2520199-1 Groundwater 21-OCT-20 08:00 E265104	L2520199-2 Groundwater 21-OCT-20 08:00 E265105	L2520199-3 Groundwater 21-OCT-20 08:00 MW6	L2520199-4 Groundwater 21-OCT-20 08:00 MW7	
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	361	456	481	292	
	Total Suspended Solids (mg/L)	9.2	146	87.0	DLHC 2650	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	304	385	457	495	
	Ammonia as N (mg/L)	3.88	8.01	53	56.0 DLHC	
	Bicarbonate (HCO3) (mg/L)	371	469	558	603	
	Carbonate (CO3) (mg/L)	<5.0	<5.0	<5.0	<5.0	
	Chloride (CI) (mg/L)	59.2	70.7	217	120 DLHC	
	Conductivity (EC) (uS/cm)	683	809	1530	1140	
	Fluoride (F) (mg/L)	0.171	0.23 DLHC	0.33 DLHC	0.44	
	Hydroxide (OH) (mg/L)	<5.0	<5.0	<5.0	<5.0	
	Nitrate and Nitrite (as N) (mg/L)	4.19	0.536	16.7	0.348	
	Nitrate (as N) (mg/L)	4.18	0.529	16.6	0.328	
	Nitrite (as N) (mg/L)	0.0071	0.0068	0.138	0.0197	
	pH (pH)	7.93	7.90	7.96	8.05	
	Sulfate (SO4) (mg/L)	5.13	17.0	24.1	0.63	
Bacteriological Tests	MPN - E. Coli (MPN/100mL)	<1	<1 DLM	<1 DLM	<1 DLA	
	Coliform Bacteria - Fecal (CFU/100mL)	<1	<2	<2	<100 DLM	
	MPN - Total Coliforms (MPN/100mL)	<1	3	<1	<100	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Aluminum (AI)-Dissolved (mg/L)	0.0010	0.0021	0.0022	0.0058	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	0.00030	0.00024	
	Arsenic (As)-Dissolved (mg/L)	0.00014	0.00039	0.00356	0.0170	
	Barium (Ba)-Dissolved (mg/L)	0.353	0.352	0.365	0.458	
	Beryllium (Be)-Dissolved (mg/L)	<0.000020	<0.000020	<0.000020	<0.000020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	0.035	0.038	0.132	0.105	
	Cadmium (Cd)-Dissolved (mg/L)	0.000368	0.000119	0.0000675	0.0000183	
	Calcium (Ca)-Dissolved (mg/L)	111	136	152	89.8	
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	<0.00010	0.00015	0.00022	
	Cobalt (Co)-Dissolved (mg/L)	0.00060	0.00199	0.00810	0.00367	
	Copper (Cu)-Dissolved (mg/L)	0.00130	0.00048	0.00195	0.00046	
	Iron (Fe)-Dissolved (mg/L)	0.012	1.32	6.24	13.9	
	Lead (Pb)-Dissolved (mg/L)	0.000098	<0.000050	0.000068	0.000135	
	Lithium (Li)-Dissolved (mg/L)	0.0114	0.0146	0.0265	0.0186	
	Magnesium (Mg)-Dissolved (mg/L)	20.3	28.3	24.9	16.3	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2520199 CONTD....

PAGE 3 of 5 29-OCT-20 14:33 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2520199-1 Groundwater 21-OCT-20 08:00 E265104	L2520199-2 Groundwater 21-OCT-20 08:00 E265105	L2520199-3 Groundwater 21-OCT-20 08:00 MW6	L2520199-4 Groundwater 21-OCT-20 08:00 MW7	
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	0.441	0.930	1.18	0.437	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.000819	0.00112	0.00999	0.0112	
	Nickel (Ni)-Dissolved (mg/L)	0.00512	0.00934	0.0463	0.00840	
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	0.071	
	Potassium (K)-Dissolved (mg/L)	6.70	6.24	30.4	28.2	
	Selenium (Se)-Dissolved (mg/L)	0.000310	0.000995	0.000758	0.000353	
	Silicon (Si)-Dissolved (mg/L)	3.99	4.68	7.11	6.37	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	27.6	18.5	75.4	56.0	
	Strontium (Sr)-Dissolved (mg/L)	0.498	0.830	1.74	1.39	
	Sulfur (S)-Dissolved (mg/L)	1.79	7.08	7.49	<0.50	
	Thallium (TI)-Dissolved (mg/L)	0.000143	0.000113	0.000141	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	0.00016	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	
	Uranium (U)-Dissolved (mg/L)	0.000527	0.000770	0.00162	0.000101	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	0.00058	0.00229	
	Zinc (Zn)-Dissolved (mg/L)	0.0051	0.0077	0.0134	0.0030	
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	0.00042	0.00074	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2520199 CONTD.... PAGE 4 of 5

FINΔI

29-OCT-20 14:33 (MT)

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2520199-1, -2, -3, -4	
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2520199-1, -2, -3, -4	
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2520199-1, -2, -3, -4	
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L2520199-1, -2, -3, -4	
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2520199-1, -2, -3, -4	
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2520199-1, -2, -3, -4	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BE-D-L-CCMS-CL	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

Reference Information

L2520199 CONTD....

PAGE 5 of 5

29-OCT-20 14:33 (MT)

Version: FINAL

SO4-L-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TC-EC-MPN-CL Water Total Coliforms and E. Coli by MPN APHA METHOD 9223

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The

sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

TSS-L-CL Water Total Suspended Solids APHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2520199 Report Date: 29-OCT-20 Page 1 of 8

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: Scott Garthwaite

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BE-D-L-CCMS-CL	Water							
Batch R5268866 WG3432311-3 DUP Beryllium (Be)-Dissolved		L2520199-4 <0.000020	<0.000020	RPD-NA	mg/L	N/A	20	26-OCT-20
WG3432311-2 LCS Beryllium (Be)-Dissolved			105.0		%		80-120	26-OCT-20
WG3432311-1 MB Beryllium (Be)-Dissolved			<0.000020		mg/L		0.00002	26-OCT-20
WG3432311-4 MS Beryllium (Be)-Dissolved		L2520199-4	111.9		%		70-130	26-OCT-20
CL-L-IC-N-CL	Water							
Batch R5269524								
WG3433177-6 LCS Chloride (CI)			104.1		%		85-115	23-OCT-20
WG3433177-5 MB Chloride (CI)			<0.10		mg/L		0.1	23-OCT-20
F-L-IC-CL	Water							
Batch R5269524								
WG3433177-6 LCS Fluoride (F)			104.2		%		85-115	23-OCT-20
WG3433177-5 MB Fluoride (F)			<0.020		mg/L		0.02	23-OCT-20
FCC-MF-CL	Water							
Batch R5267378 WG3431182-3 MB Coliform Bacteria - Fecal			<1		CFU/100mL		1	22-OCT-20
HG-D-CVAA-CL	Water							
Batch R5269634								
WG3433221-14 LCS Mercury (Hg)-Dissolved			101.0		%		80-120	27-OCT-20
WG3433221-18 LCS Mercury (Hg)-Dissolved			103.0		%		80-120	27-OCT-20
WG3433221-13 MB Mercury (Hg)-Dissolved			<0.0000050		mg/L		0.000005	27-OCT-20
WG3433221-17 MB Mercury (Hg)-Dissolved			<0.0000050		mg/L		0.000005	27-OCT-20
MET-D-CCMS-CL	Water							

Workorder: L2520199 Report Date: 29-OCT-20 Page 2 of 8

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-D-CCMS-CL	Water							
Batch R52688	66							
WG3432311-3 DUI		L2520199-4	0.0000			7.0	00	
Aluminum (Al)-Dissol		0.0058	0.0063		mg/L	7.9	20	26-OCT-20
Antimony (Sb)-Dissol		0.00024	0.00024		mg/L	0.7	20	26-OCT-20
Arsenic (As)-Dissolve		0.0170	0.0171		mg/L	1.0	20	26-OCT-20
Barium (Ba)-Dissolve		0.458	0.452		mg/L	1.2	20	26-OCT-20
Bismuth (Bi)-Dissolve	ed	<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	26-OCT-20
Boron (B)-Dissolved		0.105	0.106		mg/L	1.0	20	26-OCT-20
Cadmium (Cd)-Disso		0.0000183	0.0000187		mg/L	2.2	20	26-OCT-20
Calcium (Ca)-Dissolv		89.8	91.3		mg/L	1.6	20	26-OCT-20
Chromium (Cr)-Disso		0.00022	0.00024		mg/L	10	20	26-OCT-20
Cobalt (Co)-Dissolve		0.00367	0.00365		mg/L	0.5	20	26-OCT-20
Copper (Cu)-Dissolve	ed	0.00046	0.00045		mg/L	3.1	20	26-OCT-20
Iron (Fe)-Dissolved		13.9	13.8		mg/L	0.4	20	26-OCT-20
Lead (Pb)-Dissolved		0.000135	0.000136		mg/L	1.1	20	26-OCT-20
Lithium (Li)-Dissolved	d	0.0186	0.0180		mg/L	3.1	20	26-OCT-20
Magnesium (Mg)-Dis	solved	16.3	16.3		mg/L	0.4	20	26-OCT-20
Manganese (Mn)-Dis	solved	0.437	0.447		mg/L	2.2	20	26-OCT-20
Molybdenum (Mo)-Di	ssolved	0.0112	0.0112		mg/L	0.1	20	26-OCT-20
Nickel (Ni)-Dissolved		0.00840	0.00840		mg/L	0.1	20	26-OCT-20
Phosphorus (P)-Diss	olved	0.071	0.071		mg/L	0.8	20	26-OCT-20
Potassium (K)-Dissol	ved	28.2	27.9		mg/L	1.0	20	26-OCT-20
Selenium (Se)-Dissol	ved	0.000353	0.000334		mg/L	5.8	20	26-OCT-20
Silicon (Si)-Dissolved		6.37	6.31		mg/L	0.9	20	26-OCT-20
Silver (Ag)-Dissolved		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	26-OCT-20
Sodium (Na)-Dissolve	ed	56.0	56.0		mg/L	0.1	20	26-OCT-20
Strontium (Sr)-Dissol	ved	1.39	1.41		mg/L	1.4	20	26-OCT-20
Sulfur (S)-Dissolved		<0.50	<0.50	RPD-NA	mg/L	N/A	20	26-OCT-20
Thallium (TI)-Dissolve	ed	<0.00010	<0.000010	RPD-NA	mg/L	N/A	20	26-OCT-20
Tin (Sn)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	26-OCT-20
Titanium (Ti)-Dissolve	ed	<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	26-OCT-20
Uranium (U)-Dissolve	ed	0.000101	0.000100		mg/L	1.5	20	26-OCT-20
Vanadium (V)-Dissol	ved	0.00229	0.00231		mg/L	0.8	20	26-OCT-20
Zinc (Zn)-Dissolved		0.0030	0.0031		mg/L	1.4	20	26-OCT-20
Zirconium (Zr)-Dissol	ved	0.00074	0.00074		mg/L	0.3	20	26-OCT-20

Workorder: L2520199 Report Date: 29-OCT-20 Page 3 of 8

est N	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-D-CCMS-CL V	Nater							
Batch R5268866								
WG3432311-2 LCS			404.0		0/			
Aluminum (Al)-Dissolved			104.2		%		80-120	26-OCT-20
Antimony (Sb)-Dissolved			101.1		%		80-120	26-OCT-20
Arsenic (As)-Dissolved			101.8		%		80-120	26-OCT-20
Barium (Ba)-Dissolved			105.4		%		80-120	26-OCT-20
Bismuth (Bi)-Dissolved			104.8		%		80-120	26-OCT-20
Boron (B)-Dissolved			109.5		%		80-120	26-OCT-20
Cadmium (Cd)-Dissolved			103.3		%		80-120	26-OCT-20
Calcium (Ca)-Dissolved			102.3		%		80-120	26-OCT-20
Chromium (Cr)-Dissolved			102.4		%		80-120	26-OCT-20
Cobalt (Co)-Dissolved			103.1		%		80-120	26-OCT-20
Copper (Cu)-Dissolved			101.7		%		80-120	26-OCT-20
Iron (Fe)-Dissolved			100.2		%		80-120	26-OCT-20
Lead (Pb)-Dissolved			106.0		%		80-120	26-OCT-20
Lithium (Li)-Dissolved			103.7		%		80-120	26-OCT-20
Magnesium (Mg)-Dissolved			106.1		%		80-120	26-OCT-20
Manganese (Mn)-Dissolved			104.6		%		80-120	26-OCT-20
Molybdenum (Mo)-Dissolve	ed		104.3		%		80-120	26-OCT-20
Nickel (Ni)-Dissolved			100.9		%		80-120	26-OCT-20
Phosphorus (P)-Dissolved			107.6		%		70-130	26-OCT-20
Potassium (K)-Dissolved			101.2		%		80-120	26-OCT-20
Selenium (Se)-Dissolved			98.6		%		80-120	26-OCT-20
Silicon (Si)-Dissolved			104.2		%		60-140	26-OCT-20
Silver (Ag)-Dissolved			103.5		%		80-120	26-OCT-20
Sodium (Na)-Dissolved			104.4		%		80-120	26-OCT-20
Strontium (Sr)-Dissolved			108.1		%		80-120	26-OCT-20
Sulfur (S)-Dissolved			98.6		%		80-120	26-OCT-20
Thallium (TI)-Dissolved			106.6		%		80-120	26-OCT-20
Tin (Sn)-Dissolved			103.2		%		80-120	26-OCT-20
Titanium (Ti)-Dissolved			97.8		%		80-120	26-OCT-20
Uranium (U)-Dissolved			105.9		%		80-120	26-OCT-20
Vanadium (V)-Dissolved			105.6		%		80-120	26-OCT-20
Zinc (Zn)-Dissolved			100.1		%		80-120	26-OCT-20
Zirconium (Zr)-Dissolved			100.8		%		80-120	26-OCT-20
WG3432311-1 MB								

Workorder: L2520199 Report Date: 29-OCT-20 Page 4 of 8

Гest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R52688	366							
WG3432311-1 ME Aluminum (Al)-Disso			<0.0010		mg/L		0.004	20 OCT 20
Antimony (Sb)-Disso			<0.0010		mg/L		0.001	26-OCT-20
Arsenic (As)-Dissolv			<0.00010		mg/L		0.0001	26-OCT-20
Barium (Ba)-Dissolv			<0.00010		mg/L		0.0001	26-OCT-20
Bismuth (Bi)-Dissolv			<0.00010	1	mg/L		0.0001 0.00005	26-OCT-20 26-OCT-20
Boron (B)-Dissolved			<0.010	,	mg/L			
Cadmium (Cd)-Diss			<0.00005	:c	mg/L		0.01	26-OCT-20
` '			<0.050	OC.	•		0.000005	26-OCT-20
Calcium (Ca)-Dissol Chromium (Cr)-Diss			<0.00010		mg/L		0.05	26-OCT-20
` '					mg/L		0.0001	26-OCT-20
Cobalt (Co)-Dissolve			<0.00010 <0.00020		mg/L		0.0001	26-OCT-20
Copper (Cu)-Dissolv	/eu		<0.00020		mg/L		0.0002	26-OCT-20
Iron (Fe)-Dissolved	1				mg/L		0.01	26-OCT-20
Lead (Pb)-Dissolved			<0.000050)	mg/L		0.00005	26-OCT-20
Lithium (Li)-Dissolve			<0.0010		mg/L		0.001	26-OCT-20
Magnesium (Mg)-Di			<0.0050		mg/L		0.005	26-OCT-20
Manganese (Mn)-Di			<0.00010		mg/L		0.0001	26-OCT-20
Molybdenum (Mo)-D			<0.000050)	mg/L		0.00005	26-OCT-20
Nickel (Ni)-Dissolve			<0.00050		mg/L		0.0005	26-OCT-20
Phosphorus (P)-Dis			<0.050		mg/L		0.05	26-OCT-20
Potassium (K)-Disso			<0.050		mg/L		0.05	26-OCT-20
Selenium (Se)-Disso			<0.000050)	mg/L		0.00005	26-OCT-20
Silicon (Si)-Dissolve			<0.050		mg/L		0.05	26-OCT-20
Silver (Ag)-Dissolve			<0.000010)	mg/L		0.00001	26-OCT-20
Sodium (Na)-Dissolv			<0.050		mg/L		0.05	26-OCT-20
Strontium (Sr)-Disso			<0.00020		mg/L		0.0002	26-OCT-20
Sulfur (S)-Dissolved			<0.50		mg/L		0.5	26-OCT-20
Thallium (TI)-Dissolv	ved		<0.000010)	mg/L		0.00001	26-OCT-20
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	26-OCT-20
Titanium (Ti)-Dissol	ved		<0.00030		mg/L		0.0003	26-OCT-20
Uranium (U)-Dissolv	red .		<0.000010)	mg/L		0.00001	26-OCT-20
Vanadium (V)-Disso	lved		<0.00050		mg/L		0.0005	26-OCT-20
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	26-OCT-20
Zirconium (Zr)-Disso	olved		<0.00020		mg/L		0.0002	26-OCT-20
WG3432311-4 MS	3	L2520199-4						

Workorder: L2520199 Report Date: 29-OCT-20 Page 5 of 8

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R5268866	6							
WG3432311-4 MS		L2520199-4						
Aluminum (AI)-Dissolv			111.1		%		70-130	26-OCT-20
Antimony (Sb)-Dissolv			110.1		%		70-130	26-OCT-20
Arsenic (As)-Dissolved			111.4		%		70-130	26-OCT-20
Barium (Ba)-Dissolved			N/A	MS-B	%		-	26-OCT-20
Bismuth (Bi)-Dissolved	I		107.8		%		70-130	26-OCT-20
Boron (B)-Dissolved			116.4		%		70-130	26-OCT-20
Cadmium (Cd)-Dissolv	red		110.4		%		70-130	26-OCT-20
Calcium (Ca)-Dissolve	d		N/A	MS-B	%		-	26-OCT-20
Chromium (Cr)-Dissolv	/ed		108.7		%		70-130	26-OCT-20
Cobalt (Co)-Dissolved			111.2		%		70-130	26-OCT-20
Copper (Cu)-Dissolved	i		108.7		%		70-130	26-OCT-20
Iron (Fe)-Dissolved			109.5		%		70-130	26-OCT-20
Lead (Pb)-Dissolved			111.0		%		70-130	26-OCT-20
Lithium (Li)-Dissolved			109.4		%		70-130	26-OCT-20
Magnesium (Mg)-Disse	olved		N/A	MS-B	%		-	26-OCT-20
Manganese (Mn)-Diss	olved		N/A	MS-B	%		-	26-OCT-20
Molybdenum (Mo)-Disa	solved		112.9		%		70-130	26-OCT-20
Nickel (Ni)-Dissolved			108.3		%		70-130	26-OCT-20
Phosphorus (P)-Dissol	ved		109.9		%		70-130	26-OCT-20
Potassium (K)-Dissolv	ed		105.0		%		70-130	26-OCT-20
Selenium (Se)-Dissolv	ed		111.5		%		70-130	26-OCT-20
Silicon (Si)-Dissolved			108.3		%		70-130	26-OCT-20
Silver (Ag)-Dissolved			110.6		%		70-130	26-OCT-20
Sodium (Na)-Dissolved	d		N/A	MS-B	%		-	26-OCT-20
Strontium (Sr)-Dissolve	ed		N/A	MS-B	%		-	26-OCT-20
Thallium (TI)-Dissolved	d		110.0		%		70-130	26-OCT-20
Tin (Sn)-Dissolved			110.2		%		70-130	26-OCT-20
Titanium (Ti)-Dissolved	b		107.0		%		70-130	26-OCT-20
Uranium (U)-Dissolved			112.5		%		70-130	26-OCT-20
Vanadium (V)-Dissolve	ed		112.0		%		70-130	26-OCT-20
Zinc (Zn)-Dissolved			110.0		%		70-130	26-OCT-20
Zirconium (Zr)-Dissolv	ed		111.5		%		70-130	26-OCT-20
,								_0 000

NH3-L-F-CL

Water

Workorder: L2520199

Report Date: 29-OCT-20

Page 6 of 8

Test	Matrix	Reference	Result Qualifier	Units	RPD	Limit	Analyzed
NH3-L-F-CL	Water						
Batch R5269964 WG3433389-22 LCS Ammonia as N			104.4	%		85-115	27-OCT-20
WG3433389-21 MB Ammonia as N			<0.0050	mg/L		0.005	27-OCT-20
NO2-L-IC-N-CL	Water						
Batch R5269524 WG3433177-6 LCS Nitrite (as N)			105.4	%		00.440	00 007 00
WG3433177-5 MB Nitrite (as N)			<0.0010	% mg/L		90-110	23-OCT-20 23-OCT-20
NO3-L-IC-N-CL	Water						
Batch R5269524							
WG3433177-6 LCS Nitrate (as N)			103.9	%		90-110	23-OCT-20
WG3433177-5 MB Nitrate (as N)			<0.0050	mg/L		0.005	23-OCT-20
PH/EC/ALK-CL	Water						
Batch R5266696							
WG3430997-17 LCS Conductivity (EC)			94.1	%		90-110	23-OCT-20
Alkalinity, Total (as CaC	O3)		101.0	%		90-110 85-115	23-OCT-20 23-OCT-20
WG3430997-16 MB	/			,-		00 110	20 001 20
Conductivity (EC)			<2.0	uS/cm		2	23-OCT-20
Bicarbonate (HCO3)			<5.0	mg/L		5	23-OCT-20
Carbonate (CO3)			<5.0	mg/L		5	23-OCT-20
Hydroxide (OH)			<5.0	mg/L		5	23-OCT-20
Alkalinity, Total (as CaC	O3)		<2.0	mg/L		2	23-OCT-20
SO4-L-IC-N-CL	Water						
Batch R5269524 WG3433177-6 LCS			404.0	0/			
Sulfate (SO4) WG3433177-5 MB Sulfate (SO4)			101.9 <0.050	% mg/L		85-115 0.05	23-OCT-20 23-OCT-20

Workorder: L2520199 Report Date: 29-OCT-20

Page 7 of 8

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TC-EC-MPN-CL	Water							_
Batch R5267285 WG3431152-7 MB MPN - E. Coli			<1		MPN/100mL		1	22-OCT-20
MPN - Total Coliforms			<1		MPN/100mL		1	22-OCT-20
TSS-L-CL	Water							
Batch R5268672 WG3431607-8 LCS Total Suspended Solids			98.5		%		85-115	25-OCT-20
WG3431607-7 MB Total Suspended Solids			<1.0		mg/L		1	25-OCT-20

Workorder: L2520199 Report Date: 29-OCT-20 Page 8 of 8

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

L2520199-COFC

COC Number: 20 -

anada Toll Free: 1 800 668 9878

ody (COC) / Analytical Request Form

Report To	Contact and company name below will ap	ppear on the final report		Reports / F	Recipients				Turna	round '	Time (fAT) R	eques	ted									
Company:	Sperling Hansen Associates Inc.		Select Report I	Format: PDF	Z EXCEL E	DD (DIGITAL)	√ Rou	tine [R] if	received	by 3pm	M-F -	no surc	harges	apply									
Contact:	Scott Garthwaite		Merge QC/QC	Reports with COA	YES, N	O N/A		ay [P4] if (_									
Phone:	778-471-7088		Compare Resu	ults to Criteria on Report	- provide details bek	ow if box checked		y [P3] if								'	AFFIX AL		ODE LA		:RE		
	Company address below will appear on the f	inal report	Select Distribut	tion: 🗹 EMAIL	MAÎL 🗌	FAX		day [P2] if received by 3pm M-F - 50% rush surcharge minimum day [E] if received by 3pm M F 100% rush surcharge minimum									(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Street:	1225 East Keith Road		Email 1 or Fax	sgarthwaite@spe	rlinghansen.com		Sam	ime day [E2] if received by 10am M-S - 200% rush surcharge. Additional															
City/Province:	North Vancouver, B.C.		Email 2	chetherington@sp	erlinghansen.co	m	fees	may appl	apply to rush requests on weekends, statutory holidays and non-														
Postal Code:	V7J 1J3		Email 3				D	ate and T	ime Red	quired fo	or all E	&P TAT	s:										
Invoice To	Same as Report To	☑ NO		Invoice R	ecipients				Fo	or all test	s with re	sh TATs	reques	ted, plea	se contac	ct your AM	our AM to confirm availability.						
	Copy of Invoice with Report	□ NO	Select Invoice I	Distribution: 🗸 EM	IAIL MAIL [FAX							Ana	alysis	Reque	st							
Company:		<u>.</u>	Email 1 or Fax	rhajjafari@sperling	ghansen com		18	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F								(F/P) belo	N		l E	(S			
Contact:			Email 2																	≝	Š		
	Project Information		Oil and Gas Required Fields (client use)								Ţ	Τ								REQUIRED	e		
ALS Account # / Quote #:			AFE/Cost Center:		PO#		CONTAINERS		ļ									,	ON HOLD	2	S S		
Job #:	20050 Hosmer	-	Major/Minor Code:		Routing Code:]င်[일	5	월		
PO / AFE:			requisitioner.								<u>6</u>						orm	.	Z	≱			
LSD:			Location:								s (F/P)				ŀ		Cell		S	STORAGE	Ĭ		
ALS Lab Work Order # (ALS use only):			ALS Contact:	Dean Watt	Sampler: Tyl	er McBrid	BER		Total Alkalinity	`	ed Metals	Total Metals (P)	e e				Fecal and Total Coliform		SAMPLES		SUSPECTED HAZARD (see notes)		
ALS Sample # Sample Identification and/or Coordinates			·····	Date	Time	Carrada Tura	NCM			1,	Dissolved	Ĕ	Ammonia		.		a		≥	I	S S		
(ALS use only)	(This description will	appear on the report)	- •	(dd-mmm-yy)	(hh:mm)	Sample Type	ž		Total Al	TSS	Diss	Tota	Amı			- 1	Fec		15	Ϋ́	S		
	E265104			21-10-20		Groundwater	5	×	<u>, , , , , , , , , , , , , , , , , , , </u>				×				¥						
	E265105			21-10-20	5:	Groundwater	5	×	بر	\w	×		×				1		\top				
	E2661067					Groundwater	<u> </u>									\top			-1-	\top			
	MW6			21-10-20		Groundwater	+	- ×	-	+	1	┼─┤			-+	+	×	-+	+	+	┢		
*				21-10-20		-	5		\neg	<u> </u>	+	-	×		-+		+ -		+	╁	-		
	MW7			21-10-20		Groundwater	5	>	<u> </u>	<u> </u>	*	↓	*			_	≯		-	—	<u> </u>		
							$\perp \downarrow$				<u> </u>	<u> </u>						_			ــــــ		
	<u> </u>			L							L												
											T							į			ĺ		
							T			<u> </u>	T						\Box			1			
		·					f		1	1	t^-								\neg	1			
				,		<u> </u>	 - -	-		+	+	 -					+			\dagger			
							├ ╌┾			+	┼						+	$ \vdash$		╂	 		
						<u> </u>	├ ╌┴				CARA	DI E D	ECEU	TO DE	FAILC	(A) C	لبيا			ــــــــــــــــــــــــــــــــــــــ	L		
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify		valuation by selectir	ig from drop-dow	n below	SAMPLE RECEMPT DETAILS (ALS use only) Cooling Method: NOTE ICE ICE PACKS FROZEN COOLI								ING INIT	TATED							
Are samples taken from a Regulated DW System? British Columbia Contam					mendment (NO)	/ 2017)		ission C											NO NO	IATED			
□ ☑ NO British Columbia Approve										·										FS []	N/A		
Are samples for human consumption/ use?			red and tronking	Train addity Guid	eiiies (W/TT, 20	,	Cooler Custody Seals Intact: YES							zampic				RATURES		1//			
Are samples for	I NO		•				15/1										T						
ليا	SHIPMENT RELEASE (client use	l	<u> </u>	NITIAL SHIPMENT	RECEPTION /A	I Susa only)	└				F	INAL	SHIPN	/ENT	RECEF	TION I	ALS us	e only)					
Released by.	Date:	Time:	Received by:		Date: 1	/ Constant	Time	\ R	èceive	d by:	<u>-</u>			Date:					Time	e:			
Tyler N	CBnbe Oct 21,7	1020			101	122	Zime:			•													
DEEED TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLIN	IG INFORMATION		// (2011)	T LADODATOR	V CODY VEU	OWI C	LIENT O	ODV											AUG 20	20 FRONT		

