Hosmer Septage Ponds 2021 Groundwater Monitoring Annual Report

PREPARED FOR:REGIONAL DISTRICT OF EAST KOOTENAY PREPARED BY: SPERLING HANSEN ASSOCIATES

January, 2022

PRJ21063

- Landfill Engineering
- Solid Waste Planning
- Environmental Monitoring
- Landfill Fire Control

1. INTRODUCTION

Sperling Hansen Associates (SHA) was retained by the Regional District of East Kootenay (RDEK) in 2020 to develop an updated Groundwater Monitoring Program (GMP) for seven (7) Solid Waste Management facilities located withing the RDEK. As part of this GMP update SHA, along with Bear Environmental Ltd. (BEAR), will conduct four (4) groundwater sampling events per year, and provide one interim report per event for each site. The goal of this program is to provide the RDEK with valuable information regarding the groundwater quality at disposal sites and to assist in developing appropriate monitoring and management until 2025.

In 2021, sampling events occurred in January, April, July, and November. Typically, the fall event is completed in October, however this year BEAR and SHA encountered delays in equipment availability due to supply shortages. As a result, the fall event in 2021 was completed in early November. Samples taken from each site are recorded below, and water quality analysis discussed in Section 3. This report details the sampling notes, lab analysis results, and trends observed at the wells throughout 2021. Section 5 presents recommendations for the next year of monitoring.

1.1 Location and Setting

The Hosmer site is located in the sub-region of Elk Valley within the RDEK. The site is approximately 5 km north of the community of Hosmer. The latitude and longitude are 49.63563 N and 114.92165 W respectively.

Photo 1-1. Hosmer Site Layout.

1.2 Site Operations

The site is around 1 hectare in size, and consists of two unlined septic waste disposal basins. The basins are located central on the site and occupy approximately 0.44 hectares.

Due to the potential for contamination when septic waste comes into contact with water, it is required to monitor the groundwater on and surrounding the site to observe any impacts from the exfiltration ponds. There are 5 groundwater wells at the Hosmer site, which are monitored quarterly in January, April, July, and November. The well locations are identified in Figure 1.

The property operates under certificate permit PE-6901, which is attached to this report as Appendix A.

2. MONITORING PROGRAM

Per the Site's Permit, the RDEK is authorized to discharge septic tank pumpage and sewage holding tank effluent at 22.7 m³/day from domestic and other sources through infiltration basins to the ground approximately 6.5 km north of Hosmer, BC. A groundwater monitoring program is not included in the Permit, likely due to its published date of 1983.

Per Section 85 of the BC Municipal Wastewater regulation, a discharger must install monitoring wells in sufficient number and orientation, as determined by a qualified professional, to measure background and receiving environment water quality. This includes at least 4 wells per aquifer, one of which must be a background monitoring well. A total of five (5) monitoring wells exist, and all were sampled in accordance to the BC Field Sampling Manual in 2021.

2.1 Methodology

BEAR conducts the field sampling at the seven RDEK sites. Each well sampled is tested for a set of parameters that are intended to determine any site impact on the groundwater. Some parameters are tested quarterly while others are only tested annually. Sampling was conducted in accordance with the BC Field Sampling Manual. Table 2-1 shows which parameters are tested Quarterly and Yearly.

Table 2-1. Groundwater Monitoring Parameters.

Site	Quarterly Params	Yearly Params
	Temperature	Temperature
	Conductivity	Conductivity
	pН	pН
	Nitrite (N)	Nitrite (N)
	Nitrate (N)	Nitrate (N)
	Ammonia Nitrogen (NH3)	Ammonia Nitrogen (NH3)
	Fluoride (F)	Fluoride (F)
Hagman Cantaga	Sulphate (SO4)	Sulphate (SO4)
Hosmer Septage Treatment Pond	Chloride (Cl)	Chloride (Cl)
	Hardness	Hardness
	Total Alkalinity	Total Alkalinity
	Total Suspended Solids	Total Suspended Solids
	Fecal and Total Coliform	Fecal and Total Coliform
	Dissolved Metals	Dissolved Metals
		BTEX
		EPH/VPH

Analysis of the water samples was conducted by ALS Environmental, a CALA accredited laboratory. Samples were sent by BEAR to ALS in Calgary via courier. Certificates of Analysis (COA) are included in Appendix C. Based on internal laboratory QA/QC, the results are considered reliable.

2.2 Groundwater Flow

The Hosmer site is located approximately 150 m directly east of the Elk River and immediately west of the Crowsnest Highway 3. The river is the closest surface water body to the Site. According to the BC Water Resources Atlas, there are no mapped aquifers underlying the site. Based on regional topography, groundwater is inferred to flow south west in the same direction as the Elk River. Locally, groundwater flow can be affected by building foundations, recharge areas, drainage and subsurface utilities. Depending on their depth, underground structures may significantly influence shallow groundwater flow in the vicinity of the Site. Based on water levels collected in 2021, local groundwater appears to flow west toward the Elk River, however based on groundwater quality observed at the upgradient and downgradient wells, local groundwater likely flows radially away from the site rather than in one set direction. Additionally, it should be noted that the Hosmer septage ponds are at a lower elevation than the Highway and is in a similarly low-lying area to the old gravel pit across the Highway. This should be considered when assessing impact to groundwater from the surrounding land uses.

Well details and water level (depth to water bgs) are shown in the Table 2-2 below.

Table 2-2. Well Details and Water Level

Well ID	Well Construction	Q1 Water Level (m)	Q2 Water Level (m)	Q3 Water Level (m)	Q4 Water Level (m)
E265105	2" PVC	5.110	4.515	4.820	5.165
E265106	2" PVC	4.510	3.870	4.075	4.420
E265107	2" PVC	5.285	4.835	5.065	5.330
E265108	2" PVC	5.680	5.205	5.455	5.725
E265104	2" PVC	5.840	5.075	5.410	5.840

2.3 Nomenclature

The reporting of monitoring wells at the East Kootenay sites has previously been a combination of Environmental Monitoring System Numbers (EMSN) and site number names that are the more common naming convention (MW-1). The majority of sites have both, but some wells only have the E number. To avoid confusion and the potential of double counting the wells, SHA has decided to use the E numbers when referring to them. This way reports and analyses can be consistent, and can be traced to the OC or Permit for the site. The site maps attached to these Annual Reports as Figure 1 have been updated to reflect this change and now have the EMSN numbers labelled.

2.4 Regulatory Criteria

The permit of operation for the site, published in 1983, does not specify water quality guidelines or standards to be used for comparison to assess groundwater. SHA has used the standards that are appropriate for the site to be consistent with the other solid waste sites in the RDEK.

The CSR Protocol 21 indicates that Drinking Water (DW) Standards generally apply where drinking water sources are within 500m of a site, or if a property is situated on an aquifer that could be used in the future for Drinking Water. A search for water wells revealed that there are no water wells within 500m of the Site. Information from the BC Water Atlas indicates that there are no mapped aquifers underlying the Site. Although current DW use appears to not apply to the site, without further investigation, future DW standards are assumed to apply. Note that future drinking water use applies where information is unavailable or inadequate to demonstrate an absence of drinking water aquifers below a site.

The BC Contaminated Sites Regulation (CSR) Protocol 21 indicates that Aquatic Life Standards (AW) generally apply to all groundwater located within 500 m of a surface water body containing aquatic life. The Site is located approximately 150m east of Elk River, therefore the Aquatic Life for Freshwater (AW) standards will apply.

Based on surrounding water use the following standards are considered to apply:

• The Schedule 3.2 of the BC CSR with consideration to Aquatic Life (AW) and Drinking Water (DW);

These standards and guidelines are the most recent published by BC ENV used to assess groundwater at contaminated sites and the quality of drinking water.

3. RESULTS

Permit PE-6901 does not outline parameters for monitoring. SHA has continued the monitoring program employed by EcoLogic for the past several years which are consistent with landfill leachate parameters analysed throughout the RDEK.

The parameters tested during in 2021 include:

• temperature, conductivity, pH, nitrite, nitrate, ammonia nitrogen, fluoride, sulphate, chloride, hardness, alkalinity, total suspended solids, fecal and total coliform.

*It should be noted that Section c) of Appendix 1 of PE-6901 states that "The characteristics of the effluent shall be equivalent or better than typical 'septic tank pumpage' and typical holding tank effluent from residential, commercial, and industrial sources."

Appendix B attached shows the water quality analysis conducted by ALS Environmental, and Table B-1 provides the water quality analysis alongside the applicable water standards. Laboratory certificates are attached in Appendix C.

3.1 Exceedances

The following parameters were above BC CSR Schedule 3.2 DW standards in one or more wells:

- Barium
- Manganese
- Selenium
- Sodium
- Strontium
- Ammonia
- Chloride
- Nitrate (as N)
- Nitrate and Nitrite (as N)
- Lithium (dissolved)

Table 3-1 presents a summary of exceedances by analyte. Details are provided in the sections below.

Table 3-1. Summary of Exceedances by Analyte

	E265104	E265105	E265107	E265108
Lab Results				
Dissolved Metals				
Barium (dissolved)	Х			
Lithium (dissolved)	Х	Х	Х	Х
Manganese (dissolved)	Х		Х	
Selenium (dissolved)	Х			
Sodium (dissolved)			Х	
Strontium (dissolved)			Х	
General and Inorganic Parameters				
Ammonia (total, as N)	Χ	X	X	X
Chloride	Х		X	Х
Nitrate (as N)			Х	Х
Nitrate + Nitrite (as N)			Х	Х

Note that E.Coli and Fecal Coliform were present in some wells in numbers that exceed Canadian Drinking Water Standards.

Table 3-2 below shows maximum concentrations.

Table 3-2. Maximum Parameter Concentrations Above BC CSR DW Standards

Parameter	BC CSR DW Standard	Maximum Concentration (mg/L)	Well Name
E.Coli	*No detectable bacteria per 100 mL	<100	E265106, E265108
Fecal Coliforms	*No detectable bacteria per 100 mL	1,060	E265104
Barium (dissolved)	1,000 μg/L	1,120	E265104
Lithium (dissolved)	8 μg/L	57.2	E265108
Manganese (dissolved)	1,500 μg/L	1,820	E265107
Selenium (dissolved)	10 μg/L	41.8	E265104
Sodium (dissolved)	200 μg/L	231	E265107
Strontium (dissolved)	2,500 μg/L	2,880	E265107
Chloride	250,000 μg/L	714,000	E265104
Nitrate (as N)	10 mg/L	135	E265108
Nitrate + Nitrite (as N)	10 mg/L	135	E265108

[&]quot;*" Denotes applicable Canadian Drinking Water Standard as the is no BC CSR standards for coliforms. Green shading indicates a concentration above applicable standards.

Note: concentrations listed in the table are all above applicable DW standards. Maximum concentrations are shown in **bold.**

Table 3-3. Maximum Parameter Concentrations Above BC CSR AW Standards

Parameter	BC CSR AW Standard	Maximum Concentration (mg/L)	Well Name
Selenium (dissolved)	20 μg/L	41.8	E265104
Ammonia	Calculated*	118,000	E265107

"*" - Calculated based on temperature and pH

Note: concentrations listed in the table are all above applicable AW standards. Maximum concentrations are shown in bold.

3.2 Annual Event

The annual event in 2021 was completed in the same quarter as previous years, in April, as per the precedent set by EcoLogic. The annual event is the sampling event when select parameters that are only tested for once a year are completed. For Hosmer, these included hydrocarbons such as BTEX (benzene, toluene, ethylbenzene and xylene) and EPH/VPH (extractable petroleum hydrocarbons).

3.3 Notes on Regional Background Concentrations

As per the British Columbia Contaminated Sites Regulation (CSR) Schedule 3.2, 2019, the drinking water limit for Lithium (Li) is 8 µg/L or 0.008 mg/L. Many regions in B.C. have background concentrations of lithium that exceed this limit, which poses a complication for monitored sites that are required under Operation Certificates or Permits to avoid exceedances of harmful parameters. In response, the B.C. Ministry of Environment and Climate Change (BC ENV) published a document in 2018 qualifying the limit and providing background concentrations for three regions in the province for five metals, including arsenic, cobalt, and lithium. The limits published in the *Technical Bulletin 3: Regional Background Concentrations for Select Inorganic Substances in Groundwater* account for naturally occurring levels of the five metals, and are therefore higher than the limit within the CSR currently.

However, these three regions only comprise the Lower Mainland, South Vancouver Island, and Thompson-Okanagan. SHA believes the exceedances in lithium observed at the RDEK sites are attributable to natural background concentrations that are not accounted for in the CSR Schedule 3.2 or *Technical Bulletin 3*. It should be noted that Eco/Logic did not have a comparison limit for lithium, which explains why lithium was not a reported exceedance in previous years despite there being little difference between 2019 and 2020 results.

Thompson-Okanagan, the nearest region to the RDEK with a back ground concentration qualifier for lithium, has a qualified concentration in the Bulletin of $96\,\mu\text{g/L}$, or $0.096\,\text{mg/L}$. Arsenic has a background concentration of $0.013\,\text{mg/L}$, and Cobalt $0.02\,\text{mg/L}$. SHA recommends keeping a note of this and a close eye on these parameters in ongoing monitoring. SHA does not believe the RD needs to look into remediation measures at this point, but recommends the RD flag this exceedance history in the case that the Ministry publishes background concentrations for the Kootenay region.

4. DISCUSSION

All parameters tested were below applicable BC CSR Schedule 3.2 AW standards, except for dissolved selenium at well E265104 and ammonia at E265104, E265105, E265107, and E265108. The maximum concentration of selenium was found at E265104 at 41.8 μ g/L versus the BC CSR AW standard of 20 μ g/L. The maximum concentration of ammonia was found at E265107 at 118,000 μ g/L versus the BC CSR AW calculated standard of 18,500 μ g/L.

These maximums are calculated as the following times their respective standards:

- Selenium 2.09
- Ammonia 6.38

Parameters above applicable BC CSR Schedule 3.2 DW standards included the following.

- Barium
- Manganese
- Selenium
- Sodium
- Strontium
- Chloride
- Nitrate (as N)
- Nitrate and Nitrite (as N)
- Lithium (dissolved)

The maximum concentration of lithium was found at E265108 at 57.2 μ g/L versus the BC CSR DW standard of 8 μ g/L. The maximum concentration of barium was found at E265104 at 1,120 μ g/L versus the BC CSR DW standard of 1,000 μ g/L. The maximum manganese concentration was found at E265107 at 1,820 mg/L versus the BC CSR DW standard of 1,500 μ g/L. The maximum selenium concentration was found at E265104 at 41.8 μ g/L versus the BC CSR DW standard of 10 μ g/L. The maximum sodium concentration was found at E265107 at 231 μ g/L versus the BC CSR DW standard of 200 μ g/L. The maximum strontium concentration was found at E265107 at 2,880 μ g/L versus the BC CSR DW standard of 2,500 μ g/L. The maximum chloride concentration was found at E265104 at 714,000 μ g/L versus the BC CSR DW standard of 250,000 μ g/L. The maximum nitrate concentration was found at E265108 at 135 μ g/L versus the BC CSR DW standard of 10 μ g/L. Similarly, the max nitrate + nitrite concentration was also found at E265108 at 135 μ g/L versus the BC CSR DW standard of 10 μ g/L.

These maximums are calculated as the following times their respective standards:

- Barium 1.12
- Manganese 1.28
- Selenium 4.18
- Sodium 1.16
- Strontium 1.15
- Chloride 2.86
- Nitrate (as N) -13.5
- Nitrate and Nitrite (as N) 13.5
- Lithium 7.15

Note that bacterial coliforms and elevated nitrate were also found in site groundwater indicating expected local impacts from the sewage infiltration basins.

Dissolved metals are found at the site groundwater in concentrations above some CSR DW and AW limits. As shown by the maximums and the amount they are over the corresponding limit, it can be observed that the dissolved metals are exceeding the DW limits by a factor less than 2, with the exception of lithium. Nitrate and lithium display similar occurrences at Wasa, the RDEK's other infiltration site.

The lithium, nitrate, and E. Coli and Fecal Coliform results are consistent with concentrations observed in 2020.

As mentioned in Section 2.2 above with regard to groundwater flow direction, wells both upgradient and downgradient of the Hosmer septage ponds exhibit similar water quality, indicating that there is not one exclusive path in which groundwater flows away from the site. As such, it is difficult to assume background water quality at the identified background well locations, and it should be considered that all monitoring wells show some degree of impact from the nearby presence of the septage ponds.

SHA reviewed Site and surrounding water use per CSR Protocol 21. Although current DW use appears to not apply to the site, without further investigation of the underlying unmapped aquifer, future DW standards are assumed to apply.

Based on this information regarding current water use, and results that show that there are several exceedances to the CSR DW and AW standards, SHA considers the impacts of the sewage infiltration basin to the surrounding environment to be occurring at a level that is expected of an unlined, natural attenuation site.

4.1 Trend Analysis

To illustrate the trends observed in key parameters at the wells sampled, SHA has prepared figures that combine the 2020-2021 analytical results with the applicable criteria limits. These figures are attached to this report as Appendix D.

- Figure 2 Barium
- Figure 3 Manganese
- Figure 4 Selenium
- Figure 5 Sodium
- Figure 6 Strontium
- Figure 7 Chloride
- Figure 8 Nitrate (as N)
- Figure 9 Nitrate and Nitrite (as N)
- Figure 10 Lithium (dissolved)
- Figure 11 Selenium
- Figure 12 Ammonia

Sulfate, sodium, chloride, nitrate, and nitrite are graphed because they are typical landfill indicators. As shown in the graphs, sodium, nitrate, and chloride are above applicable DW limits. Due to the dissolved metals not being analyzed in July and November, it could not be determined whether the metals exceedances were an isolated peak in concentrations during the April event, or if this trend continued in the rest of the year. The status of the dissolved metals will be confirmed in the January event of 2022.

Please note that the graphs provided are for observing trends, and data less than or equal to the detection limit for a parameter appears on graphs as trace concentrations. If a well shows to have no data on the graph, please refer to the master data table for the exact parameter concentration.

5. CONCLUSIONS AND RECOMMENDATIONS

Some parameters generally associated with sewage effluent including nitrate, E. Coli, and fecal coliforms were noted above applicable BC CSR DW Standards, but below BC CSR AW standards in Site groundwater. Although there appears to be local impacts to groundwater from the Site's sewage infiltration basins, SHA considers the overall impacts to human health and the surrounding environment to be low based on Site and surrounding water use.

Other metals parameters that appear slightly elevated included lithium, manganese, selenium, sodium, and strontium that may be related to Site impacts. In conducting analyses for seven different sites within the RDEK with similar exceedances of lithium under the CSR DW limit, SHA believes these elevated concentrations are a region-wide occurrence caused by existing background concentrations rather than impacts caused by activities at the solid waste sites.

SHA recommends the following:

Parameter concentrations of dissolved metals slightly above applicable standards were detected in the Site groundwater monitoring wells. Based on surrounding land use, and relatively low impact to the immediate environment, SHA does not envision a change to the sampling method is warranted at this time. However, if exceeding parameters begin to form a consistently increasing trend, the RDEK may consider groundwater sampling methods using a low flow technique, where possible, to minimize the resuspension of colloidal materials that can be caused during sampling with bailers and/or Waterra inertia pumps. If this sampling method is effective in providing a more accurate interpretation of groundwater data and able to show the groundwater exceedances are a result of suspended materials from bailer sampling, then SHA could make a recommendation to the Regional District to implement this sampling method for the monitoring going forward.

The next sampling event is scheduled for Q2 in April 2022.

6. STATEMENT OF LIMITATIONS

This report has been prepared by Sperling Hansen Associates. (SHA) on behalf of the Regional District of East Kootenay (RDEK) in accordance with generally accepted engineering practices to a level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions in British Columbia.

The report is based on site visits, project experience, and analysis by SHA staff of data compiled during the preparation of this report from a number of sources. Except where specifically stated to the contrary, the information on which this study is based has been obtained from external sources. This external information has not been independently verified or otherwise examined by SHA to determine its accuracy and completeness. SHA has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the reports as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

The report is intended solely for the use of the RDEK. Any use which other parties makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such other parties. SHA does not accept any responsibility for other uses of the material contained herein nor for damages, if any, suffered by any third party because of decisions made or actions based on this report. Copying of this intellectual property for other purposes is not permitted.

The findings and conclusions of this report are valid only as of the date of this report. The interpretations presented in this report and the conclusions and recommendations that are drawn are based on information that was made available to SHA during the course of this project. Should additional new data become available in the future, SHA should be requested to re-evaluate the findings of this report and modify the conclusions and recommendations drawn, as required.

Should you have any questions on this report or require further assistance or information, please feel free to contact the undersigned at 778-471-7088 or 604-986-7723.

Report prepared by:

Chloe Hetherington

Chlor Altherington

Environmental Analyst Assistant

Report reviewed by:

Scott Garthwaite

Sr. Civil Technologist

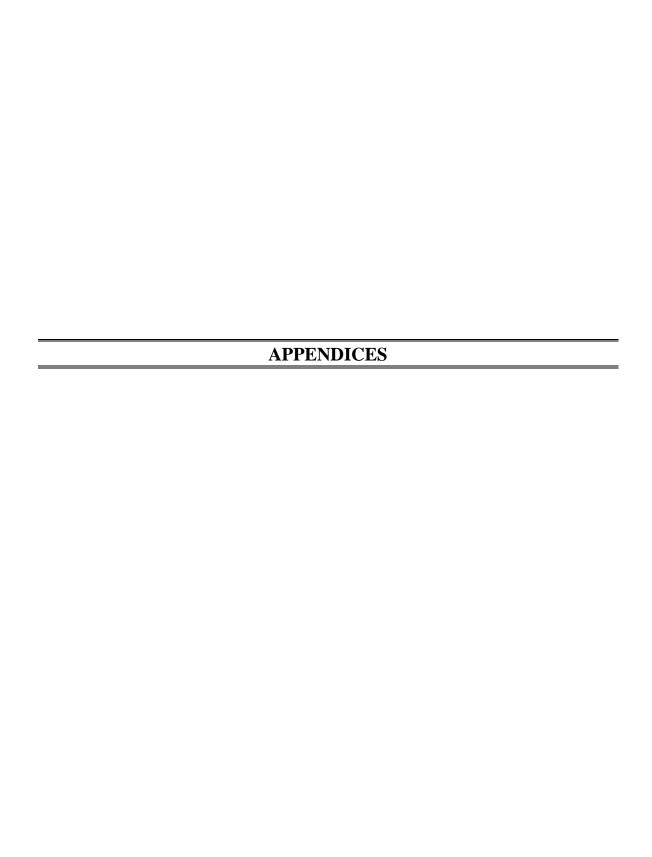
7. REFERENCES

Eco/Logic Environmental, Hosmer Septage Treatment Ponds Groundwater Monitoring Report 2019, prepared for the Regional District of East Kootenay.

Environmental Management Act, BC Contaminated Sites Regulation Schedule 3.2, 2019.

Ministry of Environment, BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report, August 2019.

RDEK Public Web Map 2020, retrieved from https://www.rdek.bc.ca/departments/mapping



PROJECT:

SOLID WASTE FACILITY MONITORING PROGRAM 2020-2025 TITLE:

HOSMER SEPTAGE TREATMENT POND MONITORING LOCATIONS

SCALE:	DATE:		PROJECT NO:
N/A		2/01/10	21063
	y 9/y/y	/mm/dd	
DESIGNED		DRAWING	NO:
DRAWN	СН	F	igure 1
CHECKED		•	igui e i

	APPENDIX A
	Permit
· · · · · · · · · · · · · · · · · · ·	

Waste Management Branch Kootenay Region 310 Ward Street Nelson, B.C. V1L 5S4 Phone: 352-2211 Local 273, 305, or 339

YOUR FILE

OUR FILE PE-6901

JUL 1 3 1983

REGISTERED MAIL:

The Regional District of East Kootenay 19 - 24th Avenue South CRANBROOK, British Columbia V1C 3H8 JUL 15 1963

CRANBROOK BC:

Dear Sir:

Re: LETTER OF TRANSMITTAL

Enclosed is a copy of Permit No. PE-6901 issued under the provisions of the Waste Management Act in the name of Regional District of East Kootenay. Your attention is respectfully directed to the terms and conditions outlined in the Permit.

You will note that values have been expressed in the International Systems of Units (SI). These units are to be used in submitting monitoring results and any other information in connection with this Permit.

The administration of this Permit will be carried out by staff from our Regional Office located at 310 Ward Street, Nelson, British Columbia, VIL 5S4 (telephone 352-2211). Plans, data and reports pertinent to the Permit are to be submitted to the Regional Waste Manager at this address.

This Permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority shall rest with the Permittee.

Yours very truly,

MBaile

M.K. Baillargeon, P. Eng. Regional Waste Manager

MB:as

Enclosure

Front of Front of

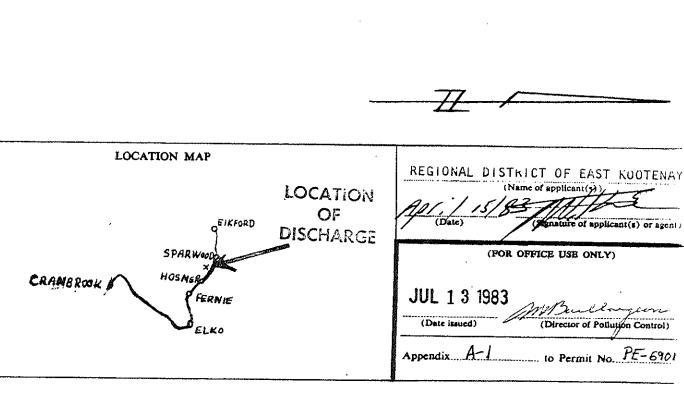
MINISTRY OF ENVIRONMENT

PERMIT

Under the Provisions of the Waste Management Act

19 - 24th Avenue South, Cranbrook, British Columbia V1C 3H8
is hereby authorized to discharge Septic tank pumpage and sewage holding tank effluent
from domestic and other sources
located in the Elk Valley
tothe ground approximately 6.5 kilometers north of Hosmer, British Columb
This permit has been issued under the terms and conditions prescribed in the attached appendices
01, A-1, B-1, C-1
MBallayon
Regional Waste Manager
JUL 1 3 1983 Date issued Permit No. PE-6901
Amendments dated, 19
, 19, 19


MINISTRY OF ENVIRONMENT WASTE MANAGEMENT BRANCH


APPENDIX No. 01

to Permit No. PE-6901

E209899

(a)	The discharge of effluent to which this appendix is applicable is to land known and describe as 0.42 hectares on a portion of Parcel 35, District Lot 4588, Kootenay
	District (Source of operation)
	as shown on attached Appendix A-1
(b)	The quantity of effluent which may be discharged is an average of 22.7 cubic metres per day
(c)	The characteristics of the effluent shall be equivalent to or better than typical septic tank
	pumpage and typical holding tank effluent from residential, commercial and industrial sources
(d)	The works authorized are infiltration basins
	approximately as shown on the attached Appendix A-1
(e)	The land from which the effluent originates and to which this appendix is appurtenant isin_the
(f)	Those works authorized and proposed must be completed and prop
	JUL 1 3 1983
	C 135UCU
Dat	e amended, 19
	, 19

MINISTRY OF ENVIRONMENT

Waste Management Branch

APPENDIX No. B-1

to Permit No. PE-6901

A. OPERATION

- Septic tank pumpage and sewage holding tank effluent are to be discharged to infiltration basins and dried before removal to a landfill site. The dried sludge is to be covered with inert material immediately after placement in the landfill.
- The minimum freeboard in the infiltration basins shall be 0.6 metre. The infiltration basin area is to be fenced and locked to prevent unauthorized access. Notice must be posted on the site to make the public aware of the type of facility being operated.

JUL 1 3 1983

Date issued , 19

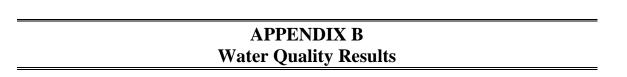
Date amended , 19

, 19

MMBaclington
Regional Waste Manager

MINISTRY OF ENVIRONMENT:

WASTE MANAGEMENT BRANCH


APPENDIX No. C-1

to Permit No. PE-6901

MONITORING:

Monthly records of the quantity of septic tank pumpage and holding tank effluent discharged to the basins, in cubic metres per day, and the names of operators having access to the facility shall be maintained and retained for periodic inspection.

 MBaullanger Regional Waste Manager

Hosmer Exfiltration Si

			sampling Location Date Sampled		E265104 21-Oct-20	E265104 13-Jan-21	E265104 28-Apr-21	E265104 27-Jul-21	E265104 09-Nov-21	E265105 22-Jul-20	E265105 21-Oct-20	E265105 13-Jan-21	E265105 28-Apr-21	E265105 27-Jul-21	E265105 09-Nov-21	E265106 22-Jul-20	E265106 13-Jan-21	E265106 28-Apr-21	E265106 27-Jul-21	E265106 09-Nov-21	E265107 22-Jul-20	E265107 21-Oct-20	E265107 13-Jan-21	E265107 28-Apr-21	E265107 27-Jul-21	E265107 09-Nov-21	E265108 22-Jul-20	E265108 21-Oct-20	E265108 13-Jan-21	E265108 28-Apr-21	E265108 27-Jul-21	E265108 09-Nov-21
Table B-1 Water Quality	Analysi	s	Lab Sample ID Sample Type		L2520199-1	L2548126-1	L2581831-1	L2619475-1	L2661089-1	L2478666-2	L2520199-2	L2548126-2	L2581831-2	L2619475-2	L2661089-2	L2478666-3	L2548126-3	L2581831-3	L2619475-3	L2661089-3	L2478666-4	L2520199-3	L2548126-4	L2581831-4	L2619475-4	L2661089-4	L2478666-5	L2520199-4	L2548126-5	L2581831-5	L2619475-5	L2661089-5
Analyte	Unit		CSR DW																													
Lab Results Anions and Cations in meq/L unit		CSR AW	CSR DW																					-								
Aluminum (meq/L) (calculated)	meq/L	NG NG	NG	<0.00011	0.0001 0.00514	0.00016 0.00603	<0.00056 0.0163			0.00507	0.00023 0.00513	0.00024	<0.00011 0.00329			0.00255	0.00018	<0.00011 0.00215			0.00049	0.00024 0.00531	0.00032	<0.00056			0.00036 0.00706	0.00064 0.00667	0.00085	<0.00056 0.00960		
Barium (meq/L) (calculated) Bicarbonate (HCO3) (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	0.00269 4.05	6.08	6.97	11.6	6.57	7.33	0.00186 3.95	7.69	12.8	4.65	4.44	7.97	0.00188 4.03	0.00264 6.24	4.74	5.00	6.49	8.11	9.15	0.00566 11.3	0.00644 14.4	8.34	10.2	9.01	9.88	0.00855 10.4	10.2	11.6	11.4
Boron (meq/L) (calculated) Calcium (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	<0.0028	0.0097 5.54	0.0086 6.84	0.016 22.3	5.29	6.09	<0.0028 3.63	0.011 6.79	0.012 10.8	0.0033 4.91	3.89	7.34	<0.0028 4.01	<0.0028 5.29	<0.0028 4.99	4.13	5.34	0.024 4.24	0.0366 7.58	0.0327 9.43	0.0333 13.0	4.53	9.68	0.026 4.72	0.0291 4.48	0.039	0.0427 9.88	5.14	13.2
Carbonate (CO3) (meq/L) (calculated)	meq/L	NG	NG	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Chloride (meq/L) (calculated) Chromium (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	0.285	1.67	4.03 0.000022	20.1 <0.000029	2.54	2.42	0.0759 0.000016	1.99	4.88 0.0000098	0.291	0.0595	2.73	0.0581	0.212	0.127 <0.000058	0.0528	0.109	2.45 0.000024	6.12 0.0000087	6.57 0.000006	15.1 <0.000029	3.44	5.11	3.3 0.000018	3.39 0.000013	2.93	7.19 <0.000029	5.02	6.54
Copper (meq/L) (calculated)	meq/L	NG	NG	0.000023	0.000041	0.0000538	0.000085			0.000024	0.000015	0.000029	0.000016			0.000015	0.000026	0.000015			0.000011	0.0000614	0.0000585	0.000079			0.000012	0.000014	0.000038	0.000031		
Fluoride (meq/L) (calculated) Hvdroxide (OH) (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	0.00695	0.00900 <0.29	<0.0053 <0.29	<0.0053 <0.29	0.00579 <0.29	0.00732 <0.29	0.00805 <0.29	0.012 <0.29	0.0063 <0.29	0.00611 <0.29	0.00769 <0.29	0.010 <0.29	0.00848	0.00653 <0.29	0.00563 <0.29	0.00753 <0.29	0.00795 <0.29	0.02 <0.29	0.017 <0.29	0.0084 <0.29	0.0068 <0.29	0.010 <0.29	0.020	0.014 <0.29	0.023	0.0058	<0.0053 <0.29	0.0124 <0.29	0.010 <0.29
Lead (meq/L) (calculated)	meq/L	NG	NG	<0.0000048	0.00000095	0.00000236	<0.0000024	-0.25	-0.20	0.0000117	<0.00000048	<0.0000048	<0.0000048	-0.25	-0.25	0.00000085	<0.00000048	<0.00000048	10.20	-0.25	0.00000079	0.00000066	0.00000065	<0.0000024	-0.25	-0.25	<0.00000048	0.00000130	<0.0000024	<0.0000024	-0.25	-0.20
Lithium (meq/L) (calculated) Magnesium (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	0.00061	0.00164	0.00182 1.98	0.00553 8.31	1.42	1.71	0.00075	0.00210 2.33	0.0039	0.0011	1.37	2.4	0.00081	0.0010	0.00098	1.46	1.88	0.00222 1.36	0.00382 2.05	0.00463 2.23	0.00571 3.37	1.15	2.13	0.00278	0.00268	0.00444	0.00824 2.57	1.35	2.98
Potassium (meq/L) (calculated)	meq/L	NG	NG	0.0494	0.17	0.166	0.412	1.42	1.71	0.023	0.160	0.312	0.0811	1.37	2.4	0.017	0.020	0.015	1.40	1.00	0.737	0.778	0.880	1.4	1.15	2.10	0.885	0.721	0.79	1.13	1.55	2.00
Sodium (meq/L) (calculated) Strontium (meq/L) (calculated)	meq/L meq/L	NG NG	NG NG	0.386	1.2 0.0114	2.4 0.0138	1.5 0.0441			0.108	0.805	2.85 0.0338	0.295			0.111	0.184	0.148			1.97 0.0235	3.28 0.0397	4.2 0.0416	10.0 0.0658			2.52 0.0288	0.0317	2.86 0.0557	4.78 0.0521		
Sulfate (meq/L) (calculated)	meq/L	NG	NG	0.145	0.107	0.170	0.0976	0.110	0.117	0.743	0.35	0.170	1.5	0.904	0.783	0.799	1.3	1.05	0.802	1.12	0.0090	0.502	0.641	0.631	0.0845	0.287	0.0058	0.013	0.262	0.964	0.0616	0.239
Zinc (meq/L) (calculated)	meg/L	NG	NG	0.000052	0.00016	0.000083	<0.00015			0.000095	0.00024	0.00015	<0.000031			0.000058	0.00012	0.000031			0.00010	0.000410	0.000358	0.000404			0.000055	0.00009	<0.00015	<0.00015		
Dissolved Metals Aluminum (dissolved)	μg/L	NG	9500 2.1	<1.0	1	1.4	<5.0			45.6	2.1	2.2	<1.0			22.9	1.6	<1.0			4.4	2.2	2.9	<5.0			3.2	5.8	7.6	<5.0		
Antimony (dissolved)	μg/L	90	6	<0.10	<0.10	0.11	<0.50			<0.10	<0.10	0.13	<0.10			<0.10	0.11	<0.10			0.12	0.3	0.23	<0.50			0.11	0.24	<0.50	<0.50		
Arsenic (dissolved) Barium (dissolved)	μg/L μg/L	50 10000	1000	<0.10 185	0.14 353	0.14 414	<0.50 1120			0.15 128	0.39 352	0.87 635	<0.10 226			0.17 129	0.13 181	<0.10 148			21.5 289	3.56 365	0.92 389	0.96 442			18.6 485	17 458	0.9 587	<0.50 659		
Beryllium (dissolved)	μg/L	1.5 NG	8	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.10 <0.25			<0.020 <0.050	<0.020	<0.020	<0.020 <0.050			<0.020 <0.050	<0.020 <0.050	<0.020 <0.050			<0.020 <0.050	<0.020 <0.050	<0.020	<0.10			<0.020 <0.050	<0.020 <0.050	<0.10	<0.10 <0.25		
Bismuth (dissolved) Boron (dissolved)	μg/L μg/L	NG 12000	NG 5000	<0.050 <10	<0.050 35	<0.050 31	<0.25 56			<0.050 <10	<0.050 38	<0.050 45	<0.050 12			<0.050 <10	<0.050 <10	<0.050 <10			<0.050 85	<0.050 132	<0.050 118	<0.25 120			<0.050 92	<0.050 105	<0.25 140	<0.25 154		
Cadmium (dissolved)	mg/L	Calc 11	0.005	0.0000752	0.000368	0.000328	0.000312	400000	400000	0.0000778	0.000119	0.000147	0.0000615	77000	447000	0.0000345	0.0000427	0.0000312	00000	407000	0.0000094	0.0000675	0.000189	0.000396	00700	404000	0.0000083	0.0000183	0.00015	0.000105	400000	005000
Calcium (dissolved) Chromium (dissolved)	μg/L μg/L	NG 10 ^{1.2}	NG 50 ^{2.2}	74700 0.15	111000 <0.10	137000 0.38	446000 <0.50	106000	122000	72800 0.28	136000 <0.10	216000 0.17	98300	77900	147000	80300 0.13	106000 <0.10	100000 <0.10	82800	107000	84900 0.42	152000 0.15	189000 0.1	260000 <0.50	90700	194000	94500 0.31	89800 0.22	201000 <0.50	198000 <0.50	103000	265000
Cobalt (dissolved)	μg/L	40	20 2.3	<0.10 0.73	0.6	0.41 1.71	2.59 2.7			0.17 0.75	1.99	5.58 0.91	0.53 0.50			<0.10 0.48	<0.10 0.84	<0.10			2.66 0.36	8.1 1.95	3.39 1.86	6.06 2.5			2.98 0.37	3.67 0.46	1.99	1.80		
Copper (dissolved) Hardness, Total (dissolved as CaCO3)	μg/L mg/L	Calc 13 NG	1500 ^{2.4} NG	244	361	442	1530	336	392	251	0.48 456	713	327	263	488	275	361	0.49 344	279	362	280	481	584	818	284	591	308	292	624	622	323	811
Iron (dissolved)	µg/L	NG 0 1 14	6500 ^{2.5}	<10 <0.050	12 0.098	<10 0.244	<50 <0.25			233	1320 <0.050	5420 <0.050	<10			29	<10	<10			15000 0.082	6240 0.068	781 0.067	365 <0.25			18100 <0.050	13900 0.135	<50 <0.25	<50 <0.25		
Lead (dissolved) Lithium (dissolved)	μg/L μg/L	Calc 14 NG	10	4.2	11.4	12.6	38.4			1.21 5.2	14.6	<0.050 27	<0.050 7.8			0.088 5.6	<0.050 7.2	<0.050 6.8			15.4	26.5	32.1	39.6			19.3	18.6	30.8	57.2		
Magnesium (dissolved)	mg/L	NG	NG 26	13.9	20.3	24.1	101	17.3	20.8	16.7	28.3	42	19.9	16.6	29.2	18	23.2	22.7	17.7	22.9	16.5	24.9	27.1	41.0	14.0	25.9	17.5	16.3	29.7	31.2	16.4	36.2
Manganese (dissolved) Mercury (dissolved)	μg/L μg/L	NG 0.25	1500 2.6	15.7	441 <0.0050	317 <0.0050	1610 <0.0050			115	930 <0.0050	1420 <0.0050	317 <0.0050			6.61	5.95 <0.0050	0.43 <0.0050			554	1180 <0.0050	1090 <0.0050	1820 <0.0050			335	437 <0.0050	645 <0.0050	618 <0.0050		
Molybdenum (dissolved)	μg/L	10000	250	0.584	0.819	0.548	3.28			0.648	1.12	1.37	0.707			0.83	0.553	0.592			4.87	9.99	4.94	8.11			9.84	11.2	7.26	2.43		
Nickel (dissolved) Phosphorus (dissolved, by ICPMS/ICPOES)	μg/L μg/L	Calc 15 NG	80 NG	0.93 <50	5.12 <50	4.45 <50	13.3 <250			1.75 <50	9.34 <50	20.4 <50	2.66 <50			0.52 <50	0.62 <50	<0.50 <50			7.65 1960	46.3 <50	21.9 <50	43.3 <250			9.98 312	8.4 71	12.2 <250	11.1 <250		
Potassium (dissolved)	μg/L	NG	NG	1930	6700	6490	16100			910	6240	12200	3170			660	790	590			28800	30400	34400	54700			34600	28200	31000	44300		
Selenium (dissolved) Silicon (dissolved, as Si)	μg/L μg/L	20 NG	10 NG	0.365 2940	0.31 3990	0.281 3960	41.8 13300			2.09 2760	0.995 4680	1.29 5570	8.50 2660			2.1 2780	1.96 3190	6.43 2940			0.294 6160	0.758 7110	0.609 5730	1.25 6600			0.214 6530	0.353 6370	<0.25 4720	0.34 4930		
Silver (dissolved)	μg/L	Calc 1.6	20	<0.010	<0.010	<0.010	<0.050			<0.010	<0.010	<0.010	<0.010			<0.010	<0.010	<0.010			<0.010	<0.010	<0.010	<0.050	1		<0.010	<0.010	<0.050	<0.050		
Sodium (dissolved) Strontium (dissolved)	mg/L μg/L	NG NG	200 ^{2,7} 2500	8.88 161	27.6 498	55.1 605	34.4 1930			2.49 176	18.5 830	65.5 1480	6.79 416			2.56 167	4.22 248	3.40 215			45.4 1030	75.4 1740	96.6 1820	2880			57.9 1260	56 1390	65.8 2440	110 2280		
Sulphur (dissolved)	μg/L	NG	NG	4820	1790	2750	133000			14500	7080	3050	26300			16200	21100	19700			2340	7490	11400 0.44	16500 0.659			2530	<500	5800	21100		
Thallium (dissolved) Tin (dissolved)	μg/L μg/L	NG	NG 2500	0.035 <0.10	0.143 <0.10	0.131 <0.10	0.399 <0.50			0.031 <0.10	0.113 <0.10	0.197 <0.10	0.086 <0.10			<0.010 <0.10	<0.010 <0.10	<0.010 <0.10			0.010	0.141 0.16	<0.10	<0.50			<0.010	<0.010 <0.10	0.181 <0.50	0.159 <0.50		
Titanium (dissolved)	μg/L	1000	NG	<0.30	<0.30	<0.30	<1.5			0.87	<0.30	<0.30	<0.30			<0.30	<0.30	<0.30			0.49	<0.30	<0.30	<1.5			<0.30	<0.30	<1.5	<1.5		
Uranium (dissolved) Vanadium (dissolved)	μg/L μg/L	85 NG	20	0.459 <0.50	0.527 <0.50	0.516 <0.50	2.87 <2.5			0.596 <0.50	0.77 <0.50	1.04	0.618 <0.50			0.716 <0.50	0.905 <0.50	0.921 <0.50			0.023 2.45	1.62 0.58	1.39	2.20 <2.5			0.032 1.6	0.101 2.29	0.361	1.03		
Zinc (dissolved)	μg/L	Calc 1.7	3000 28	1.7	5.1	2.7	<5.0			3.1	7.7	4.8	<1.0			1.9	3.8	1.0			3.4	13.4	11.7	13.2			1.8	3	<5.0	<5.0		
Zirconium (dissolved)	µg/L	NG	NG	<0.30	<0.30	<0.30	<1.0			<0.30	<0.30	<0.30	<0.30			<0.30	<0.30	<0.30			0.48	0.42	<0.30	<1.0			0.57	0.74	<1.0	<1.0		
General and Inorganic Parameters				000		0.40	500	000	367	400	005		000	000	000	000	040		050	005	400	457	507	704		500		405	F-10	540	500	500
Alkalinity (total, as CaCO3) Ammonia (total, as N)	mg/L µg/L	NG Calc ^{1.8}	NG NG	203 198	304 3880	349 4940	582 32100	5460	3390	198 346	385 8010	641 24900	233 4190	222 165	4070	202 86.4	312 43.4	237 8.2	250 13.9	325 15.0	406 50000	53000	53800	721 118000	417 47900	509 33200	451 97400	495 56000	518 56400	510 78300	582 84600	569 64300
Bicarbonate (HCO3)	mg/L	NG	NG	247	371	425	710	401	447	241	469	782	284	271	486	246	381	289	305	396	495	558	692	879	509	621	550	603	632	622	710	694
Carbonate (CO3) Chloride	mg/L μg/L	NG 1500000	NG 250000 ^{2.9}	<5.0 10100	<5.0 59200	<5.0 143000	<5.0 714000	<5.0 89900	<5.0 85800	<5.0 2690	<5.0 70700	<5.0 173000	<5.0 10300	<5.0 2110	<5.0 96700	<5.0 2060	<5.0 7520	<5.0 4510	<5.0 1870	<5.0 3870	<5.0 86800	<5.0 217000	<5.0 233000	<5.0 534000	<5.0 122000	<5.0 181000	<5.0 117000	<5.0 120000	<5.0 104000	<5.0 255000	<5.0 178000	<5.0 232000
Conductivity	μS/cm	NG	NG 1500	395 132	683 171	1060 <100	2670 <100	849 110	920 139	411 153	809 230	1560 120	586 116	461 146	958 190	405 161	625 124	531 107	483 143	604 151	1010 300	1530 330	1900 160	3090 130	1120 190	1680 380	1180 260	1140 440	2010 110	1930 <100	1520 235	2540 190
Fluoride Hydroxide (OH)	μg/L mg/L	Calc 19 NG	1500 NG	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Nitrate (as N) Nitrate + Nitrite (as N)	mg/L mg/L	400 ^{1.10} 400 ^{1.11}	10 ^{2.10}	0.313 0.327	4.18 4.19	7.39 7.41	<0.025 <0.025	0.307	2.36 2.36	0.474 0.475	0.529 0.536	2.16 2.17	2.22	0.0301	0.285 0.285	0.429 0.432	0.434 0.437	0.554 0.554	0.0120	0.163 0.163	0.037 0.045	16.6 16.7	35.5 35.6	1.84 1.86	0.381	57.6 57.6	<0.025 <0.025	0.328 0.348	120 120	8.06 8.07	0.661	135 135
Nitrate + Nitrite (as N) Nitrate + Nitrite (as N) (calculated)	mg/L mg/L	400 ^{1.12}	10 2 12	0.321	4.19	7.41	<0.025	0.313	2.36	0.475	0.330	2.17	2.22	0.0321	0.285	0.432	0.437	0.554	0.0120	0.163	0.045	10.7	35.6	1.86	0.404	57.6	~U.U25	0.340	120	8.07	0.700	135
Nitrite (as N)	μg/L	Calc 1.13 NG	1000 NG	14 <1.0	7.1	23.4	<5.0	6.1	1.2	1 <1.0	6.8	7.4	1.0	2.0	<5.0	2.2 1.9	2.4	<1.0	<1.0	<1.0	8.2 14	138	66	17.4	22.6	28.8	6.6 1.1	19.7	85.5	8.0	38.8	58.9
Orthophosphate (dissolved, as P) pH	µg/L	NG	NG	7.97	7.93	7.63	7.60	7.72	7.55	8.09	7.9	7.57	8.04	7.87	7.51	8.07	7.64	7.91	7.80	7.56	8.19	7.96	7.47	7.34	7.57	7.29	8.01	8.05	7.26	7.42	7.45	7.28
Sulphate Temperature when received by lab	mg/L	Calc 1.14	500 ^{2.13}	6.96	5.13	8.17	4.69	5.29	5.61	35.7	17	8.18	72.0	43.4	37.6	38.4	64	50.2	38.5	53.8	0.43	24.1	30.8	30.3	4.06	13.8	0.28	0.63	12.6	46.3	2.96	11.5
Temperature when received by lab Total suspended solids	°C mg/L	NG NG	NG NG	4.9	9.2	6.1	20.5 28.2	22.3 6.0	20.6 5.2	14.7	146	258	20.6 7.4	22.0 20.6	20.1 601	2840	1190	20.4 252	21.9 114	19.9 1570	136	87	636	20.4 103	21.8 157	19.9 2310	353	2650	4060	20.4 772	21.8 1790	20.0 3610
Microbiological																																
E. coli (MPN) Fecal coliforms (counts)	MPN/100 mL CFU/100 mL	NG NG	NG NG	<1	<1	<1 <1	1060	<1	<1	<1 <1	<1 <2	<10 10	<1	<1	<100	<100 <100	<100 <100	<5	<100	<100	6 100	<1 <2	<10 <10	<2	<100	<100	45 <100	<1 <100	<100 <100	<5	<100	<100
Total coliforms (MPN)	MPN/100 mL	NG	NG	6	<1	<1	6600	1	<1	<1	3	60	<1	<1	<10	<100	100	1	9	<10	260	<1	10	1	3	<10	580	<100	<100	<1	3	<10
Petroleum Hydrocarbons																																
Benzene EPHw (10-19)	μg/L μg/L	400 500 ^{1.15}	5 5000 ^{2:14}				<0.50 190						<0.50 <100					<0.50 <100						<0.50 260						<0.50 <100		
EPHw (19-32)	μg/L	NG	NG				480						<100					<100						<100						<100		
Ethylbenzene Methyl tert-butyl ether (MTBE)	μg/L	2000 34000	140 ^{2.15} 95 ^{2.16}				<0.50 <0.50						<0.50 <0.50					<0.50 <0.50						<0.50 <0.50						<0.50 <0.50		
Toluene	μg/L μg/L	5	60 ^{2.17}				<0.50						< 0.50					<0.50						<0.50						<0.50		
VHw6-10	μg/L	15000 116	15000 2.18				<100						<100					<100						<100						<100		
VPHw m,p-Xylene	μg/L μg/L	1500 ^{1.17} NG	NG NG				<100 <0.50						<100 <0.50					<100 <0.50						<100 <0.50						<100 <0.50		
o-Xylene	μg/L	NG	NG				<0.50						< 0.50					<0.50						<0.50						<0.50		
Xylenes (total)	μg/L	300	90	-			<0.71			-			<0.71		1	+		<0.71		1				<0.71			-	-		<0.71		
Volatile Organic Compounds Styrene	μg/L	720	800				<0.50						<0.50					<0.50						<0.50						<0.50		
1				.1	I	1		1	1	1		4	1		.1				.1	1			1		.1	_1	-i	1	1		ı	

Report

APPENDIX C Certificates of Analysis

Sperling Hansen Associates Inc.

ATTN: Scott Garthwaite #8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 14-JAN-21

Report Date: 20-JAN-21 10:03 (MT)

Version: FINAL

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2548126

Project P.O. #:

NOT SUBMITTED

Job Reference:

20050 HOSMER

C of C Numbers:

Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2548126 CONTD.... PAGE 2 of 5

20-JAN-21 10:03 (MT) Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2548126-1 L2548126-2 L2548126-3 L2548126-4 L2548126-5 Sample ID **GROUNDWATER** Description **GROUNDWATER** GROUNDWATER **GROUNDWATER GROUNDWATER** Sampled Date 13-JAN-21 13-JAN-21 13-JAN-21 13-JAN-21 13-JAN-21 12:00 12:00 Sampled Time 12:00 12:00 12:00 E265104 E265105 E265106 MW6 MW7 Client ID Grouping **Analyte WATER** Hardness (as CaCO3) (mg/L) **Physical Tests** 442 713 361 584 624 Total Suspended Solids (mg/L) 6.1 258 1190 636 4060 Alkalinity, Total (as CaCO3) (mg/L) Anions and 349 641 312 567 518 **Nutrients** DLM DLM DLM DLM Ammonia as N (mg/L) 4.94 24.9 0.0434 53.8 56.4 Bicarbonate (HCO3) (mg/L) 425 782 381 692 632 Carbonate (CO3) (mg/L) < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 DLHC DLHC DLHC DLHC Chloride (CI) (mg/L) 143 173 7.52 233 104 Conductivity (EC) (uS/cm) 1060 1560 625 1900 2010 DLHC DLHC DLHC DLHC Fluoride (F) (mg/L) < 0.10 0.12 0.124 0.16 0.11 Hydroxide (OH) (mg/L) < 5.0 <5.0 <5.0 <5.0 <5.0 Nitrate and Nitrite (as N) (mg/L) 0.437 7.41 2.17 35.6 120 Nitrate (as N) (mg/L) 7.39 2.16 0.434 35.5 120 DLHC DLHC DLHC DLHC Nitrite (as N) (mg/L) 0.0234 0.0074 0.0024 0.0660 0.0855 pH (pH) 7.64 7.57 7.47 7.26 DLHC DLHC DLHC Sulfate (SO4) (mg/L) 8.17 8.18 30.8 12.6 64.0 DLM DLM DLM MPN - E. Coli (MPN/100mL) **Bacteriological** <10 <100 <10 <100 <1 Tests DLM DLM DLM Coliform Bacteria - Fecal (CFU/100mL) 10 <100 <100 <1 <10 DLM DLM DLM DLM MPN - Total Coliforms (MPN/100mL) 100 10 <1 63 <100 Dissolved Mercury Filtration Location **Dissolved Metals FIELD FIELD FIELD FIELD FIELD** Dissolved Metals Filtration Location **FIELD FIELD** FIFI D **FIELD** FIFI D DLDS Aluminum (Al)-Dissolved (mg/L) 0.0022 0.0016 0.0014 0.0029 0.0076 DLDS Antimony (Sb)-Dissolved (mg/L) 0.00011 0.00013 0.00011 0.00023 < 0.00050 DLDS Arsenic (As)-Dissolved (mg/L) 0.00014 0.00087 0.00013 0.00090 0.00092 DLDS Barium (Ba)-Dissolved (mg/L) 0.414 0.635 0.181 0.389 0.587 DLDS Beryllium (Be)-Dissolved (mg/L) < 0.000020 < 0.000020 < 0.000020 < 0.000020 < 0.00010 DLDS Bismuth (Bi)-Dissolved (mg/L) < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.00025 DLDS Boron (B)-Dissolved (mg/L) 0.031 0.045 < 0.010 0.118 0.140 Cadmium (Cd)-Dissolved (mg/L) 0.0000427 0.000328 0.000147 0.000189 0.000150 DLDS Calcium (Ca)-Dissolved (mg/L) 137 216 106 189 201 DLDS Chromium (Cr)-Dissolved (mg/L) 0.00017 < 0.00010 < 0.00050 0.00038 0.00010 DLDS Cobalt (Co)-Dissolved (mg/L) 0.00558 < 0.00010 0.00339 0.00199 0.00041 DLDS Copper (Cu)-Dissolved (mg/L) 0.00171 0.00091 0.00084 0.00186 0.0012 DLDS Iron (Fe)-Dissolved (mg/L) < 0.010 < 0.010 0.781 < 0.050 5.42 DLDS Lead (Pb)-Dissolved (mg/L) 0.000244 < 0.000050 < 0.000050 0.000067 <0.00025 Lithium (Li)-Dissolved (mg/L) 0.0126 0.0270 0.0072 0.0321 0.0308 DLDS Magnesium (Mg)-Dissolved (mg/L) 24.1 42.0 23.2 27.1 29.7

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2548126 CONTD.... PAGE 3 of 5

PAGE 3 of 5 20-JAN-21 10:03 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2548126-1 3ROUNDWATER 13-JAN-21 12:00 E265104	L2548126-2 3ROUNDWATEF 13-JAN-21 12:00 E265105	L2548126-3 GROUNDWATER 13-JAN-21 12:00 E265106	L2548126-4 GROUNDWATEF 13-JAN-21 12:00 MW6	L2548126-5 GROUNDWATER 13-JAN-21 12:00 MW7
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	0.317	1.42	0.00595	1.09	0.645
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.000050	<0.000050	<0.000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000548	0.00137	0.000553	0.00494	0.00726
	Nickel (Ni)-Dissolved (mg/L)	0.00445	0.0204	0.00062	0.0219	0.0122
	Phosphorus (P)-Dissolved (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.25
	Potassium (K)-Dissolved (mg/L)	6.49	12.2	0.79	34.4	31.0 DLDS
	Selenium (Se)-Dissolved (mg/L)	0.000281	0.00129	0.00196	0.000609	<0.00025
	Silicon (Si)-Dissolved (mg/L)	3.96	5.57	3.19	5.73	4.72 DLDS
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000050
	Sodium (Na)-Dissolved (mg/L)	55.1	65.5	4.22	96.6	65.8 DLDS
	Strontium (Sr)-Dissolved (mg/L)	0.605	1.48 RRV	0.248	1.82	2.44 DLDS
	Sulfur (S)-Dissolved (mg/L)	2.75	3.05	21.1	11.4	5.8 DLDS
	Thallium (TI)-Dissolved (mg/L)	0.000131	0.000197	<0.000010	0.000440	0.000181
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.0015
	Uranium (U)-Dissolved (mg/L)	0.000516	0.00104	0.000905	0.00139	0.000361
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.0025
	Zinc (Zn)-Dissolved (mg/L)	0.0027	0.0048	0.0038	0.0117	<0.0050
	Zirconium (Zr)-Dissolved (mg/L)	<0.00030	<0.00030	<0.00030	<0.00030	<0.0010

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2548126 CONTD.... PAGE 4 of 5

20-JAN-21 10:03 (MT)
Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2548126-1, -2, -3, -4, -5	
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2548126-1, -2, -3, -4, -5	
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2548126-1, -2, -3, -4, -5	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**		
BE-D-L-CCMS-CL	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)		

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

SO4-L-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Reference Information

L2548126 CONTD....

PAGE 5 of 5

20-JAN-21 10:03 (MT)

Version: FINAL

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TC-EC-MPN-CL

Water

Total Coliforms and E. Coli by MPN

APHA METHOD 9223

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The

sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

TSS-L-CL

Water

Total Suspended Solids

APHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2548126 Report Date: 20-JAN-21 Page 1 of 6

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: Scott Garthwaite

est	Matrix	Reference	Result Qualifier	Units R	PD Limit	Analyzed
BE-D-L-CCMS-CL	Water					
Batch R5349898 WG3474441-2 LCS Beryllium (Be)-Dissolved		TMRM	99.2	%	80-120	16-JAN-21
WG3474441-1 MB Beryllium (Be)-Dissolved			<0.000020	mg/L	0.00002	16-JAN-21
CL-L-IC-N-CL	Water					
Batch R5352816 WG3475239-2 LCS Chloride (CI)			100.4	%	85-115	14-JAN-21
WG3475239-1 MB Chloride (Cl)			<0.10	mg/L	0.1	14-JAN-21
F-L-IC-CL	Water					
Batch R5352816 WG3475239-2 LCS Fluoride (F)			99.3	%	85-115	14-JAN-21
WG3475239-1 MB Fluoride (F)			<0.020	mg/L	0.02	14-JAN-21
FCC-MF-CL	Water					
Batch R5348371 WG3474093-1 MB Coliform Bacteria - Fecal			<1	CFU/100mL	1	14-JAN-21
HG-D-CVAA-CL	Water					
Batch R5353916 WG3475612-2 LCS						
Mercury (Hg)-Dissolved WG3475612-6 LCS Mercury (Hg)-Dissolved			101.0 99.1	%	80-120 80-120	19-JAN-21 19-JAN-21
WG3475612-1 MB Mercury (Hg)-Dissolved			<0.0000050	mg/L	0.000005	19-JAN-21
MET-D-CCMS-CL	Water					
Batch R5349898						
WG3474441-2 LCS Aluminum (Al)-Dissolved		TMRM	102.3	%	80-120	16-JAN-21
Antimony (Sb)-Dissolved			98.7	%	80-120	16-JAN-21
Arsenic (As)-Dissolved			101.2	%	80-120	16-JAN-21
Barium (Ba)-Dissolved			101.5	%	80-120	16-JAN-21
Bismuth (Bi)-Dissolved			97.1	%	80-120	16-JAN-21

Workorder: L2548126 Report Date: 20-JAN-21 Page 2 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R5349898								
WG3474441-2 LCS		TMRM	00.0		0/			
Boron (B)-Dissolved			99.3		%		80-120	16-JAN-21
Cadmium (Cd)-Dissolved			101.6		%		80-120	16-JAN-21
Calcium (Ca)-Dissolved			98.6		%		80-120	16-JAN-21
Chromium (Cr)-Dissolved			102.7		%		80-120	16-JAN-21
Cobalt (Co)-Dissolved			101.3		%		80-120	16-JAN-21
Copper (Cu)-Dissolved			98.9		%		80-120	16-JAN-21
Iron (Fe)-Dissolved			96.7		%		80-120	16-JAN-21
Lead (Pb)-Dissolved			99.7		%		80-120	16-JAN-21
Lithium (Li)-Dissolved			101.1		%		80-120	16-JAN-21
Magnesium (Mg)-Dissolve			107.6		%		80-120	16-JAN-21
Manganese (Mn)-Dissolve			103.0		%		80-120	16-JAN-21
Molybdenum (Mo)-Dissolv	/ed		101.6		%		80-120	16-JAN-21
Nickel (Ni)-Dissolved			101.2		%		80-120	16-JAN-21
Phosphorus (P)-Dissolved	t		104.6		%		70-130	16-JAN-21
Potassium (K)-Dissolved			103.4		%		80-120	16-JAN-21
Selenium (Se)-Dissolved			100.3		%		80-120	16-JAN-21
Silicon (Si)-Dissolved			101.7		%		60-140	16-JAN-21
Silver (Ag)-Dissolved			98.0		%		80-120	16-JAN-21
Sodium (Na)-Dissolved			105.0		%		80-120	16-JAN-21
Strontium (Sr)-Dissolved			102.9		%		80-120	16-JAN-21
Sulfur (S)-Dissolved			99.0		%		80-120	16-JAN-21
Thallium (TI)-Dissolved			98.6		%		80-120	16-JAN-21
Tin (Sn)-Dissolved			100.3		%		80-120	16-JAN-21
Titanium (Ti)-Dissolved			95.4		%		80-120	16-JAN-21
Uranium (U)-Dissolved			101.5		%		80-120	16-JAN-21
Vanadium (V)-Dissolved			102.1		%		80-120	16-JAN-21
Zinc (Zn)-Dissolved			98.5		%		80-120	16-JAN-21
Zirconium (Zr)-Dissolved			97.0		%		80-120	16-JAN-21
WG3474441-1 MB								
Aluminum (AI)-Dissolved			<0.0010		mg/L		0.001	16-JAN-21
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	16-JAN-21
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	16-JAN-21
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	16-JAN-21
Bismuth (Bi)-Dissolved			<0.000050)	mg/L		0.00005	16-JAN-21

Workorder: L2548126 Report Date: 20-JAN-21 Page 3 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							_
Batch R53498	98							
WG3474441-1 MB			0.040					
Boron (B)-Dissolved	less d		<0.010		mg/L		0.01	16-JAN-21
Cadmium (Cd)-Disso			<0.000005	OC	mg/L		0.000005	16-JAN-21
Calcium (Ca)-Dissolv			<0.050		mg/L		0.05	16-JAN-21
Chromium (Cr)-Disso			<0.00010		mg/L		0.0001	16-JAN-21
Cobalt (Co)-Dissolve			<0.00010		mg/L		0.0001	16-JAN-21
Copper (Cu)-Dissolve	ed		<0.00020		mg/L		0.0002	16-JAN-21
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	16-JAN-21
Lead (Pb)-Dissolved			<0.000050)	mg/L		0.00005	16-JAN-21
Lithium (Li)-Dissolved			<0.0010		mg/L		0.001	16-JAN-21
Magnesium (Mg)-Dis	solved		<0.0050		mg/L		0.005	16-JAN-21
Manganese (Mn)-Dis	ssolved		<0.00010		mg/L		0.0001	16-JAN-21
Molybdenum (Mo)-Di	issolved		<0.000050)	mg/L		0.00005	16-JAN-21
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	16-JAN-21
Phosphorus (P)-Diss	olved		< 0.050		mg/L		0.05	16-JAN-21
Potassium (K)-Disso	lved		< 0.050		mg/L		0.05	16-JAN-21
Selenium (Se)-Disso	lved		<0.000050)	mg/L		0.00005	16-JAN-21
Silicon (Si)-Dissolved	d		< 0.050		mg/L		0.05	16-JAN-21
Silver (Ag)-Dissolved	I		<0.000010)	mg/L		0.00001	16-JAN-21
Sodium (Na)-Dissolv	ed		< 0.050		mg/L		0.05	16-JAN-21
Strontium (Sr)-Dissol	lved		<0.00020		mg/L		0.0002	16-JAN-21
Sulfur (S)-Dissolved			< 0.50		mg/L		0.5	16-JAN-21
Thallium (TI)-Dissolv	ed		<0.000010)	mg/L		0.00001	16-JAN-21
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	16-JAN-21
Titanium (Ti)-Dissolv	ed		<0.00030		mg/L		0.0003	16-JAN-21
Uranium (U)-Dissolve	ed		<0.000010)	mg/L		0.00001	16-JAN-21
Vanadium (V)-Dissol	ved		<0.00050		mg/L		0.0005	16-JAN-21
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	16-JAN-21
Zirconium (Zr)-Disso	lved		<0.00020		mg/L		0.0002	16-JAN-21
NH3-L-F-CL	Water							
Batch R53501	27							
WG3474466-14 LC	S							
Ammonia as N			106.0		%		85-115	16-JAN-21
WG3474466-13 MB Ammonia as N			<0.0050		mg/L		0.005	16-JAN-21

Workorder: L2548126

Report Date: 20-JAN-21

Page 4 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-CL	Water							
Batch R5352816								
WG3475239-2 LCS Nitrite (as N)			102.5		%		90-110	14-JAN-21
WG3475239-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	14-JAN-21
NO3-L-IC-N-CL	Water							
Batch R5352816 WG3475239-2 LCS Nitrate (as N)			101.4		%		90-110	14-JAN-21
WG3475239-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	14-JAN-21
PH/EC/ALK-CL	Water							
Batch R5348677								
WG3474168-8 LCS Conductivity (EC)			99.2		%		90-110	14-JAN-21
Alkalinity, Total (as CaC	CO3)		102.1		%		85-115	14-JAN-21
WG3474168-7 MB Conductivity (EC)			<2.0		uS/cm		2	14-JAN-21
Bicarbonate (HCO3)			<5.0		mg/L		5	14-JAN-21
Carbonate (CO3)			<5.0		mg/L		5	14-JAN-21
Hydroxide (OH)			<5.0		mg/L		5	14-JAN-21
Alkalinity, Total (as CaC	CO3)		<2.0		mg/L		2	14-JAN-21
SO4-L-IC-N-CL	Water							
Batch R5352816								
WG3475239-2 LCS Sulfate (SO4)			102.2		%		85-115	14-JAN-21
WG3475239-1 MB Sulfate (SO4)			<0.050		mg/L		0.05	14-JAN-21
TC-EC-MPN-CL	Water							
Batch R5348340								
WG3474076-1 MB MPN - E. Coli			<1		MPN/100mL		1	14-JAN-21
MPN - Total Coliforms			<1		MPN/100mL		1	14-JAN-21
TSS-L-CL	Water							
Batch R5353016								
WG3474759-8 LCS Total Suspended Solids			90.6		%		85-115	18-JAN-21
WG3474759-7 MB								

Workorder: L2548126 Report Date: 20-JAN-21 Page 5 of 6

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TSS-L-CL		Water							
Batch	R5353016								
WG34747	59-7 MB								
Total Sus	pended Solids			<1.0		ma/L		1	18IAN-21

Workorder: L2548126 Report Date: 20-JAN-21 Page 6 of 6

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 -

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Page

of

Report To	Contact and company name below will appear on the final report	7	Reports / F	Recipients		1		Furnaro	und T	ime (T	AT' "-				Ţ	<u> </u>					
Company:	Sperling Hansen Associates Inc.	Select Report F	ormat: PDF		DD (DIGITAL)	Routin					_										
Contact:	Scott Garthwaite					4 day [P4] if received by 3pm M-F - 2(Ш			11111	1111		ļ		
Phone:	778-471-7088		ilts to Criteria on Report			3 day [P3] if received by 3pm M-F - 2							11								
	Company address below will appear on the final report	Select Distribut	_	MAIL [2 day [P2] if received by 3pm M-F - 5 1 day [E] if received by 3pm M-F - 10 L2548126-COFC							• • •	(j					
Street:	1225 East Keith Road	Email 1 or Fax	sgarthwaite@sper	linghansen.com	,	Same	day [E2]	if receiv	ed by 1	0am M	-						, 0				
City/Province:	North Vancouver, B.C.	Email 2	chetherington@sp		m	routine	ay apply tests	to rusii	eque	on we	er. 		-						-		_)
Postal Code:	V7J 1J3	Email 3				Date	e and Tir	ne Requ	ired fo	rail E&	P TATs				dd-mi	nm-yy	hh:mn	n am/p	m		
Invoice To	Same as Report To		Invoice R	ecipients				For	all tests	with ru	sh TATs	requeste	ed, plea	se contac	t your Al	l to confir	m availa	bility.			
	Copy of Invoice with Report	Select Invoice I	Distribution: 🔽 EN	MAIL MAIL	FAX							Ana	lysis	Reque	st						
Company:		Email 1 or Fax	rhajjafari@sperlin	ghansen.com		8		Indicate	Filtere	d (F), F	reserve	d (P) or	Filtere	d and Pr	eserved	(F/P) bel	wc			ឩ	(Si
Contact:		Email 2	-			CONTAINERS														STORAGE REQUIRED	ğ
	Project Information	Qi	l and Gas Require	d Fields (client :	use)	1							l			ľ	'		ام	ថ្ក	98
ALS Account #	# / Quote #:	AFE/Cost Center:		PO#			Ì						l					ı	ᄀ	2	(S
Job #:	20050 Hosmer	Major/Minor Code:		Routing Code:	·	סֻ				l			- 1			1_			ON HOLD	9	岁
PO / AFE:		Requisitioner:								<u>@</u>						Į Ę		l l	Z	8	2
LSD:		Location:			*****	8	ŀ		-	S (F.	_		1			3				ST	Ŧ
ALS Lab Worl	k Order# (ALS use only):	ALS Contact:	Dean Watt	Sampler: T	is ide	NUMBER		Total Alkalinity		Dissolved Metals (F/P)	Total Metals (P)	.ea				Fecal and Total Coliform			SAMPLES	EXTENDED	SUSPECTED HAZARD (see notes)
ALS Sample #	Sample Identification and/or Coordinates		Date	Time	Sample Type	15	Anions	₩ F	1,	l g	Σ	Ammonia				<u>8</u>		1	≥	田	SP
(ALS use only)	(This description will appear on the report)	•	(dd-mmm-yy)	(hh:mm)	Sample Type	ž	Ani	Tot	TSS	Dis	Tot	Ā				J.		Ш	ŝ	ŭ	ାଞ
	E265104		13-01-21	-1	Groundwater	5	X	7	×	*		X				 <					
	E265105		13-01-21	_ 1	Groundwater	5	~	· ye	×	7		×				×					
	E265106		13-01-21	_	Groundwater	5	×	7	×	7		×				4					
	MW6		13-01-21	_	Groundwater	5	- X	+	×	y		×	\dashv			×			\neg		
	MW7		13-01-21	_	Groundwater	7	*		*	7) L			- 	*					
			13 01 -1	-		3	+=	+-	 	 			\dashv		-	+	┼┤			-	
				 				+	┼	 			-+		-	+	+	-	\dashv		\vdash
					<u> </u>	├┼-		+	 							-					
			`	** .		-		-	 								 	⊢⊢	_		
						<u> </u>			ļ	<u> </u>							$oxed{oxed}$				<u></u>
			<u> </u>																		
	<u> </u>				İ																
																T					
D. inking	Notes / Specification (DM) Semples 1 (all prints)	Limits for result e	evaluation by selection	ng from drop-dow	n below					SAME	LE R	CEIP	T DE	FAILS (ALS u	se only	1				
	Water (DW) Samples (client use)	<u>-</u>	xcel COC only)	*		Cooling	Method	d: 🗆	NONE		ICE	[] IC	E PACK	s 🗆	FROZEN		cc	OOLING	INITIA	ATED	
	en from a Regulated DW System? British Columbia Conta			,		Submis	sion Co	mmen	ts ider	ntified	on Sa	nple F	Receip	t Notifi	cation:		YES		10		
	rES ☑ NO British Columbia Appro	oved and Working	Water Quality Guid	lelines (MAY, 20	15)	Cooler (YES		/A S	Sample		y Seal				N	√A
Are samples for	human consumption/ use?		•	ı			INIITIAI	COOL	ER TEN	1PERAT	URES	C			FINAL	COOLE	R TEMP	'ERATU	RES º	=	\Box
. D Y	rES ✓ NO					_ْجِــًا															
Dalaga	SHIPMENT RELEASE (client use)		NITIAL SHIPMENT		LS use only)	Timai	-	00 is 10 is	b.e.	F	NAL S			RECEP	TION	ALS u	se only				
Released by:	Bride Date: Time:	Received by:	20	Date:	1/19	Time:	7 l	ceived	oy:				Date:						Time:		
KEPEK TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATOR	TOUPT TELI	OW-CI	ııçıN IC(JPY											_	AUG 2020	.0 FRONT

Sperling Hansen Associates Inc.

ATTN: Scott Garthwaite #8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 29-APR-21

Report Date: 10-MAY-21 09:55 (MT)

Version: FINAL

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2581831

Project P.O. #:

NOT SUBMITTED

Job Reference:

20050 HOSMER

C of C Numbers:

Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2581831 CONTD....

PAGE 2 of 6 10-MAY-21 09:55 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2581831-1 Water 28-APR-21 08:00 E265104	L2581831-2 Water 28-APR-21 08:00 E265105	L2581831-3 Water 28-APR-21 08:00 E265106	L2581831-4 Water 28-APR-21 08:00 MW6	L2581831-5 Water 28-APR-21 08:00 MW7
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	1530	327	344	818	622
	Temperature (Degree C)	20.5	20.6	20.4	20.4	20.4
	Total Suspended Solids (mg/L)	28.2	7.4	252	103	772
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	582	233	237	721	510
	Ammonia as N (mg/L)	32.1	4.19	0.0082	118	78.3
	Bicarbonate (HCO3) (mg/L)	710	284	289	879	622
	Carbonate (CO3) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Chloride (CI) (mg/L)	714	10.3	4.51	534	255
	Conductivity (EC) (uS/cm)	2670	586	531	3090	1930
	Fluoride (F) (mg/L)	<0.10	0.116	0.107	0.13	<0.10
	Hydroxide (OH) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Nitrate and Nitrite (as N) (mg/L)	<0.025	2.22	0.554	1.86	8.07
	Nitrate (as N) (mg/L)	<0.025	2.22	0.554	1.84	8.06
	Nitrite (as N) (mg/L)	<0.0050	0.0010	<0.0010	0.0174	0.0080
	pH (pH)	7.60	8.04	7.91	7.34	7.42
	Sulfate (SO4) (mg/L)	4.69	72.0	50.2	30.3 DLHC	46.3
Bacteriological Tests	Coliform Bacteria - Fecal (CFU/100mL)	1060 DLM	<1	<5 DLM	<2 DLM	<5
	MPN - Total Coliforms (MPN/100mL)	6600 DLA	<1	1	1	<1
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.0050	<0.0010	<0.0010	<0.0050	<0.0050
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.00010	<0.00010	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050	<0.00010	<0.00010	0.00096	<0.00050
	Barium (Ba)-Dissolved (mg/L)	1.12	0.226	0.148	0.442	0.659
	Beryllium (Be)-Dissolved (mg/L)	<0.00010	<0.000020	<0.000020	<0.00010	<0.00010
	Bismuth (Bi)-Dissolved (mg/L)	<0.00025	<0.000050	<0.000050	<0.00025	<0.00025
	Boron (B)-Dissolved (mg/L)	0.056	0.012	<0.010	0.120	0.154
	Cadmium (Cd)-Dissolved (mg/L)	0.000312	0.0000615	0.0000312	0.000396	0.000105
	Calcium (Ca)-Dissolved (mg/L)	446	98.3	100	260	198
	Chromium (Cr)-Dissolved (mg/L)	<0.00050	<0.00010	<0.00010	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)	0.00259	0.00053	<0.00010	0.00606	0.00180
	Copper (Cu)-Dissolved (mg/L)	0.0027	0.00050	0.00049	0.0025	0.0010
	Iron (Fe)-Dissolved (mg/L)	<0.050	<0.010	<0.010	0.365	<0.050
	Lead (Pb)-Dissolved (mg/L)	<0.00025	<0.000050	<0.000050	<0.00025	<0.00025
	Lithium (Li)-Dissolved (mg/L)	0.0384	0.0078	0.0068	0.0396	0.0572
	Magnesium (Mg)-Dissolved (mg/L)	101	19.9	22.7	41.0	31.2

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2581831 CONTD....

PAGE 3 of 6 10-MAY-21 09:55 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Description Sampled Date Sampled Time Client ID	Water 28-APR-21 08:00 E265104	Water 28-APR-21 08:00 E265105	Water 28-APR-21 08:00 E265106	Water 28-APR-21 08:00 MW6	Water 28-APR-21 08:00 MW7
Grouping	Analyte					
WATER						
Dissolved Metals	Manganese (Mn)-Dissolved (mg/L)	1.61	0.317	0.00043	1.82	0.618
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00328	0.000707	0.000592	0.00811	0.00243
	Nickel (Ni)-Dissolved (mg/L)	0.0133	0.00266	<0.00050	0.0433	0.0111
	Phosphorus (P)-Dissolved (mg/L)	<0.25	<0.050	<0.050	<0.25	<0.25
	Potassium (K)-Dissolved (mg/L)	16.1	3.17	0.59	54.7	44.3
	Selenium (Se)-Dissolved (mg/L)	0.0418	0.00850	0.00643	0.00125	0.00034
	Silicon (Si)-Dissolved (mg/L)	13.3	2.66	2.94	6.60	4.93
	Silver (Ag)-Dissolved (mg/L)	<0.000050	<0.000010	<0.000010	<0.000050	O.00050
	Sodium (Na)-Dissolved (mg/L)	34.4	6.79	3.40	231	110
	Strontium (Sr)-Dissolved (mg/L)	1.93	0.416	0.215	2.88	2.28
	Sulfur (S)-Dissolved (mg/L)	133	26.3	19.7	16.5	21.1
	Thallium (TI)-Dissolved (mg/L)	0.000399	0.000086	<0.000010	0.000659	0.000159
	Tin (Sn)-Dissolved (mg/L)	<0.00050	<0.00010	<0.00010	OLDS <0.00050	<0.00050
	Titanium (Ti)-Dissolved (mg/L)	<0.0015	<0.00030	<0.00030	olds <0.0015	<0.0015
	Uranium (U)-Dissolved (mg/L)	0.00287	0.000618	0.000921	0.00220	0.00103
	Vanadium (V)-Dissolved (mg/L)	<0.0025	<0.00050	<0.00050	olds <0.0025	<0.0025
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	<0.0010	0.0010	0.0132	<0.0050
	Zirconium (Zr)-Dissolved (mg/L)	<0.0010	<0.00030	<0.00030	<0.0010	<0.0010
Volatile Organic Compounds	Benzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Ethylbenzene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Methyl-tert-Butyl Ether (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Styrene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Toluene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	o-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	m+p-Xylene (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Xylenes (mg/L)	<0.00071	<0.00071	<0.00071	<0.00071	<0.00071
	Volatile Hydrocarbons (VH6-10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 4-Bromofluorobenzene (%)	105.9	97.7	100.8	103.1	102.0
	Surrogate: 3,4-Dichlorotoluene (%)	72.5	80.2	73.5	86.9	82.9
	Surrogate: 1,4-Difluorobenzene (%)	94.9	95.4	94.4	95.0	97.1
Hydrocarbons	EPH10-19 (ug/L)	190	<100	<100	260	<100
	EPH19-32 (ug/L)	480	<100	<100	<100	<100
	VPH (C6-C10) (mg/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Surrogate: 2-Bromobenzotrifluoride (%)	84.2	83.9	77.6	85.4	82.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2581831 CONTD.... PAGE 4 of 6

10-MAY-21 09:55 (MT)

FINΔI

Version:

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)	
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2581831-1, -2, -3, -4, -5	
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2581831-1, -2, -3, -4, -5	
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2581831-1, -2, -3, -4, -5	
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L2581831-1, -2, -3, -4, -5	
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2581831-1, -2, -3, -4, -5	

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
BE-D-L-CCMS-CL	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

BTXSM-HS-MS-CL Water BTEX, Styrene and MTBE EPA 8260C/5021A

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. BTEX Target compound concentrations are measured using mass spectrometry detection.

CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

EPH-L-ME-FID-CL Water EPH (C10-C19) & EPH (C19-C32) BC Lab manual

EPH is extracted from water using a hexane micro-extraction technique, with analysis by GC-FID, as per the BC Lab Manual. EPH results include PAHs and are therefore not equivalent to LEPH or HEPH.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

HG-D-CVAA-CL Water Dissolved Mercury in Water by CVAAS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.

MET-D-CCMS-CL Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Reference Information

L2581831 CONTD....

PAGE 5 of 6

10-MAY-21 09:55 (MT)

Version: FINAL

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH/EC/ALK-CL

Water

pH, Conductivity and Total Alkalinity

APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

SO4-L-IC-N-CL

Water

Sulfate in Water by IC

EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TC-MPN-CL

Water

Total Coliform

APHA 9223B

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a

probability table.
Recommended Holding Time:

Sample: 1 day Reference: APHA

TEMP-CL

TEMP-CL Water Temperature
TSS-L-CL Water Total Suspended Solids

APHA 2550-Thermometer

APHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

VH-HS-FID-CL

Water

VHs

BC Env. Lab Manual (VH in Water)

The water sample, with added reagents, is heated in a sealed vial to equilibrium. The headspace from the vial is transfered into a gas chromatograph. Compounds eluting between n-hexane and n-decane are measured and summed together using flame-ionization detection.

VPH-CALC-CL

Water

VPH Calculation

BC MOE LABORATORY MANUAL (2005)

These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Volatile Petroleum Hydrocarbons in Solids or Water" (Version 2.1, July 20, 1999). According to this method, the concentrations of specific Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene, Xylenes and Styrene) are subtracted from the collective concentration of Volatile Hydrocarbons (VH) that elute between n-hexane (nC6) and n-decane (nC10). Analysis of Volatile Hydrocarbons adheres to all prescribed elements of BCMELP method "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

XYLENES-CALC-CL

Water

Sum of Xylene Isomer Concentrations

CALCULATION

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code

Laboratory Location

CL

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

Reference Information

L2581831 CONTD....

PAGE 6 of 6

10-MAY-21 09:55 (MT)

Version: FINAL

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2581831 Report Date: 10-MAY-21 Page 1 of 10

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: Scott Garthwaite

Test M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BE-D-L-CCMS-CL V	Vater							
Batch R5450760								
WG3529562-3 DUP Beryllium (Be)-Dissolved		L2581831-2 <0.000020	<0.000020	RPD-NA	mg/L	N/A	20	05-MAY-21
WG3529562-2 LCS Beryllium (Be)-Dissolved		TMRM	98.4		%		80-120	05-MAY-21
WG3529562-1 MB Beryllium (Be)-Dissolved			<0.000020	ı	mg/L		0.00002	05-MAY-21
WG3529562-4 MS Beryllium (Be)-Dissolved		L2581831-2	96.4		%		70-130	05-MAY-21
BTXSM-HS-MS-CL V	Vater							
Batch R5452336								
WG3530033-3 DUP Benzene		L2581831-1 < 0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
Ethylbenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
Methyl-tert-Butyl Ether		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
o-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
m+p-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
Styrene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
Toluene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	04-MAY-21
WG3530033-2 LCS Benzene			104.0		%		70-130	04-MAY-21
Ethylbenzene			92.2		%		70-130	04-MAY-21
Methyl-tert-Butyl Ether			95.2		%		70-130	04-MAY-21
o-Xylene			98.2		%		70-130	04-MAY-21
m+p-Xylene			98.1		%		70-130	04-MAY-21
Styrene			91.9		%		70-130	04-MAY-21
Toluene			94.3		%		70-130	04-MAY-21
WG3530033-1 MB Benzene			<0.00050		mg/L		0.0005	04-MAY-21
Ethylbenzene			<0.00050		mg/L		0.0005	04-MAY-21
Methyl-tert-Butyl Ether			<0.00050		mg/L		0.0005	04-MAY-21
o-Xylene			<0.00050		mg/L		0.0005	04-MAY-21
m+p-Xylene			<0.00050		mg/L		0.0005	04-MAY-21
Styrene			<0.00050		mg/L		0.0005	04-MAY-21
Toluene			<0.00050		mg/L		0.0005	04-MAY-21
Surrogate: 4-Bromofluorobe	enzene		105.6		%		70-130	04-MAY-21
Surrogate: 1,4-Difluorobenz			97.7		%		70-130	04-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 2 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTXSM-HS-MS-CL	Water							
Batch R545233	6							
WG3530033-4 MS Benzene		L2581831-2	98.1		%		50-140	04-MAY-21
Ethylbenzene			92.0		%		50-140	04-MAY-21
Methyl-tert-Butyl Ether			92.4		%		50-140	04-MAY-21
o-Xylene			102.2		%		50-140	04-MAY-21
m+p-Xylene			100.6		%		50-140	04-MAY-21
Styrene			95.1		%		50-140	04-MAY-21
Toluene			87.0		%		50-140	04-MAY-21
CL-L-IC-N-CL	Water							
Batch R544376	4							
WG3527135-2 LCS Chloride (CI)			98.1		%		85-115	29-APR-21
WG3527135-6 LCS Chloride (CI)			101.0		%		85-115	29-APR-21
WG3527135-1 MB Chloride (CI)			<0.10		mg/L		0.1	29-APR-21
WG3527135-5 MB Chloride (CI)			<0.10		mg/L		0.1	29-APR-21
EPH-L-ME-FID-CL	Water							
Batch R545395	6							
WG3527874-2 LCS EPH10-19			105.0		%		70-130	06-MAY-21
EPH19-32			102.0		%		70-130	06-MAY-21
WG3527874-1 MB								
EPH10-19			<100		ug/L		100	06-MAY-21
EPH19-32			<100		ug/L		100	06-MAY-21
Surrogate: 2-Bromobe	nzotrifluoride		72.7		%		60-140	06-MAY-21
F-L-IC-CL	Water							
Batch R544376								
WG3527135-2 LCS Fluoride (F)			93.5		%		85-115	29-APR-21
WG3527135-6 LCS Fluoride (F)			97.2		%		85-115	29-APR-21
WG3527135-1 MB Fluoride (F)			<0.020		mg/L		0.02	29-APR-21
WG3527135-5 MB Fluoride (F)			<0.020		mg/L		0.02	29-APR-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 3 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
FCC-MF-CL	Water							
Batch R5443972 WG3527311-3 MB Coliform Bacteria - Fecal			<1		CFU/100mL		1	29-APR-21
HG-D-CVAA-CL	Water							
Batch R5452466 WG3529545-6 LCS Mercury (Hg)-Dissolved			92.0		%		80-120	05-MAY-21
WG3529545-5 MB Mercury (Hg)-Dissolved			<0.0000050		mg/L		0.000005	05-MAY-21
MET-D-CCMS-CL	Water							
Batch R5450760								
WG3529562-3 DUP Aluminum (Al)-Dissolved		L2581831-2 < 0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05 MAY 24
Antimony (Sb)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A N/A	20	05-MAY-21
Arsenic (As)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	05-MAY-21 05-MAY-21
Barium (Ba)-Dissolved		0.226	0.224	KFD-NA	mg/L	1.3	20	05-MAY-21
Bismuth (Bi)-Dissolved		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	05-MAY-21
Boron (B)-Dissolved		0.012	0.012	INI D-INA	mg/L	3.0	20	05-MAY-21
Cadmium (Cd)-Dissolved		0.0000615	0.0000653		mg/L	6.0	20	05-MAY-21
Calcium (Ca)-Dissolved		98.3	97.0		mg/L	1.3	20	05-MAY-21
Chromium (Cr)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	05-MAY-21
Cobalt (Co)-Dissolved		0.00053	0.00053	IN DIVI	mg/L	0.6	20	05-MAY-21
Copper (Cu)-Dissolved		0.00050	0.00054		mg/L	6.1	20	05-MAY-21
Iron (Fe)-Dissolved		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-MAY-21
Lead (Pb)-Dissolved		<0.00050	<0.000050	RPD-NA	mg/L	N/A	20	05-MAY-21
Lithium (Li)-Dissolved		0.0078	0.0076	. =•	mg/L	2.6	20	05-MAY-21
Magnesium (Mg)-Dissolve	ed	19.9	19.5		mg/L	2.0	20	05-MAY-21
Manganese (Mn)-Dissolve		0.317	0.316		mg/L	0.2	20	05-MAY-21
Molybdenum (Mo)-Dissolv	ved	0.000707	0.000725		mg/L	2.5	20	05-MAY-21
Nickel (Ni)-Dissolved		0.00266	0.00268		mg/L	0.8	20	05-MAY-21
Phosphorus (P)-Dissolved	d	<0.050	<0.050	RPD-NA	mg/L	N/A	20	05-MAY-21
Potassium (K)-Dissolved		3.17	3.14		mg/L	1.1	20	05-MAY-21
Selenium (Se)-Dissolved		0.00850	0.00862		mg/L	1.4	20	05-MAY-21
Silicon (Si)-Dissolved		2.66	2.63		mg/L	1.3	20	05-MAY-21
Silver (Ag)-Dissolved		<0.00010	<0.000010	RPD-NA	mg/L	N/A	20	05-MAY-21
Sodium (Na)-Dissolved		6.79	6.67		mg/L	1.9	20	05-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 4 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R5450760								
WG3529562-3 DUP		L2581831-2			_			
Strontium (Sr)-Dissolved		0.416	0.434		mg/L	4.2	20	05-MAY-21
Sulfur (S)-Dissolved		26.3	26.1		mg/L	0.9	20	05-MAY-21
Thallium (TI)-Dissolved		0.000086	0.000084		mg/L	1.6	20	05-MAY-21
Tin (Sn)-Dissolved		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	05-MAY-21
Titanium (Ti)-Dissolved		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	05-MAY-21
Uranium (U)-Dissolved		0.000618	0.000612		mg/L	0.9	20	05-MAY-21
Vanadium (V)-Dissolved		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-MAY-21
Zinc (Zn)-Dissolved		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-MAY-21
Zirconium (Zr)-Dissolved		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	05-MAY-21
WG3529562-2 LCS Aluminum (Al)-Dissolved		TMRM	95.6		%		80-120	05-MAY-21
Antimony (Sb)-Dissolved			98.4		%		80-120	05-MAY-21
Arsenic (As)-Dissolved			91.1		%		80-120	05-MAY-21
Barium (Ba)-Dissolved			93.5		%		80-120	05-MAY-21
Bismuth (Bi)-Dissolved			96.9		%		80-120	05-MAY-21
Boron (B)-Dissolved			95.8		%		80-120	05-MAY-21
Cadmium (Cd)-Dissolved			92.3		%		80-120	05-MAY-21
Calcium (Ca)-Dissolved			90.5		%		80-120	05-MAY-21
Chromium (Cr)-Dissolved			90.4		%		80-120	05-MAY-21
Cobalt (Co)-Dissolved			94.0		%		80-120	05-MAY-21
Copper (Cu)-Dissolved			92.4		%		80-120	05-MAY-21
Iron (Fe)-Dissolved			93.4		%		80-120	05-MAY-21
Lead (Pb)-Dissolved			94.5		%		80-120	05-MAY-21
Lithium (Li)-Dissolved			107.5		%		80-120	05-MAY-21
Magnesium (Mg)-Dissolve	ed		96.3		%		80-120	05-MAY-21
Manganese (Mn)-Dissolve	ed		89.8		%		80-120	05-MAY-21
Molybdenum (Mo)-Dissolv	/ed		95.1		%		80-120	05-MAY-21
Nickel (Ni)-Dissolved			87.3		%		80-120	05-MAY-21
Phosphorus (P)-Dissolved	d		103.0		%		70-130	05-MAY-21
Potassium (K)-Dissolved			90.4		%		80-120	05-MAY-21
Selenium (Se)-Dissolved			87.8		%		80-120	05-MAY-21
Silicon (Si)-Dissolved			95.8		%		60-140	05-MAY-21
Silver (Ag)-Dissolved			95.0		%		80-120	05-MAY-21
Sodium (Na)-Dissolved			94.5		%		80-120	05-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 5 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R5450760								
WG3529562-2 LCS		TMRM						
Strontium (Sr)-Dissolved	1		94.1		%		80-120	05-MAY-21
Sulfur (S)-Dissolved			100.6		%		80-120	05-MAY-21
Thallium (TI)-Dissolved			96.6		%		80-120	05-MAY-21
Tin (Sn)-Dissolved			93.1		%		80-120	05-MAY-21
Titanium (Ti)-Dissolved			89.7		%		80-120	05-MAY-21
Uranium (U)-Dissolved			94.4		%		80-120	05-MAY-21
Vanadium (V)-Dissolved			93.3		%		80-120	05-MAY-21
Zinc (Zn)-Dissolved			91.8		%		80-120	05-MAY-21
Zirconium (Zr)-Dissolved	d		91.9		%		80-120	05-MAY-21
WG3529562-1 MB Aluminum (Al)-Dissolved	d		<0.0010		mg/L		0.001	05-MAY-21
Antimony (Sb)-Dissolved			<0.00010		mg/L		0.0001	05-MAY-21
Arsenic (As)-Dissolved			<0.00010		mg/L		0.0001	05-MAY-21
Barium (Ba)-Dissolved			<0.00010		mg/L		0.0001	05-MAY-21
Bismuth (Bi)-Dissolved			<0.00005	0	mg/L		0.00005	05-MAY-21
Boron (B)-Dissolved			<0.010		mg/L		0.01	05-MAY-21
Cadmium (Cd)-Dissolved	d		<0.00000	5C	mg/L		0.000005	05-MAY-21
Calcium (Ca)-Dissolved			<0.050		mg/L		0.05	05-MAY-21
Chromium (Cr)-Dissolve	ed		<0.00010		mg/L		0.0001	05-MAY-21
Cobalt (Co)-Dissolved			<0.00010		mg/L		0.0001	05-MAY-21
Copper (Cu)-Dissolved			<0.00020		mg/L		0.0002	05-MAY-21
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	05-MAY-21
Lead (Pb)-Dissolved			<0.00005	0	mg/L		0.00005	05-MAY-21
Lithium (Li)-Dissolved			<0.0010		mg/L		0.001	05-MAY-21
Magnesium (Mg)-Dissolv	ved		<0.0050		mg/L		0.005	05-MAY-21
Manganese (Mn)-Dissolv	ved		<0.00010		mg/L		0.0001	05-MAY-21
Molybdenum (Mo)-Disso	olved		<0.00005	0	mg/L		0.00005	05-MAY-21
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	05-MAY-21
Phosphorus (P)-Dissolve	ed		<0.050		mg/L		0.05	05-MAY-21
Potassium (K)-Dissolved	d		<0.050		mg/L		0.05	05-MAY-21
Selenium (Se)-Dissolved	d		<0.00005	0	mg/L		0.00005	05-MAY-21
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	05-MAY-21
Silver (Ag)-Dissolved			<0.00001	0	mg/L		0.00001	05-MAY-21
Sodium (Na)-Dissolved			< 0.050		mg/L		0.05	05-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 6 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R5450760								
WG3529562-1 MB			0.00000					
Strontium (Sr)-Dissolved	1		<0.00020		mg/L		0.0002	05-MAY-21
Sulfur (S)-Dissolved			<0.50	_	mg/L		0.5	05-MAY-21
Thallium (TI)-Dissolved			<0.000010	0	mg/L		0.00001	05-MAY-21
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	05-MAY-21
Titanium (Ti)-Dissolved			<0.00030	_	mg/L		0.0003	05-MAY-21
Uranium (U)-Dissolved			<0.000010)	mg/L		0.00001	05-MAY-21
Vanadium (V)-Dissolved			<0.00050		mg/L		0.0005	05-MAY-21
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	05-MAY-21
Zirconium (Zr)-Dissolved	d		<0.00020		mg/L		0.0002	05-MAY-21
WG3529562-4 MS Aluminum (Al)-Dissolved	d	L2581831-2	97.2		%		70-130	05-MAY-21
Antimony (Sb)-Dissolved	d		99.4		%		70-130	05-MAY-21
Arsenic (As)-Dissolved			91.1		%		70-130	05-MAY-21
Barium (Ba)-Dissolved			N/A	MS-B	%		-	05-MAY-21
Bismuth (Bi)-Dissolved			94.9		%		70-130	05-MAY-21
Boron (B)-Dissolved			87.9		%		70-130	05-MAY-21
Cadmium (Cd)-Dissolve	d		89.0		%		70-130	05-MAY-21
Calcium (Ca)-Dissolved			N/A	MS-B	%		-	05-MAY-21
Chromium (Cr)-Dissolve	d		88.6		%		70-130	05-MAY-21
Cobalt (Co)-Dissolved			87.7		%		70-130	05-MAY-21
Copper (Cu)-Dissolved			86.6		%		70-130	05-MAY-21
Iron (Fe)-Dissolved			89.4		%		70-130	05-MAY-21
Lead (Pb)-Dissolved			94.0		%		70-130	05-MAY-21
Lithium (Li)-Dissolved			105.0		%		70-130	05-MAY-21
Magnesium (Mg)-Dissol	ved		N/A	MS-B	%		-	05-MAY-21
Manganese (Mn)-Dissol	ved		N/A	MS-B	%		-	05-MAY-21
Molybdenum (Mo)-Disso	olved		95.5		%		70-130	05-MAY-21
Nickel (Ni)-Dissolved			85.7		%		70-130	05-MAY-21
Phosphorus (P)-Dissolve	ed		98.3		%		70-130	05-MAY-21
Potassium (K)-Dissolved	d		96.4		%		70-130	05-MAY-21
Selenium (Se)-Dissolved	t		83.8		%		70-130	05-MAY-21
Silicon (Si)-Dissolved			97.6		%		70-130	05-MAY-21
Silver (Ag)-Dissolved			95.0		%		70-130	05-MAY-21
Sodium (Na)-Dissolved			99.0		%		70-130	05-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 7 of 10

Гest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
	50760 MS ssolved	L2581831-2	N/A	MS-B	%		_	05-MAY-21
Thallium (TI)-Diss			95.0	we b	%		70-130	05-MAY-21
Tin (Sn)-Dissolved			95.2		%		70-130	05-MAY-21
Titanium (Ti)-Diss			94.8		%		70-130	05-MAY-21
Uranium (U)-Diss			94.7		%		70-130	05-MAY-21
Vanadium (V)-Dis			93.6		%		70-130	05-MAY-21
Zinc (Zn)-Dissolve	ed		89.2		%		70-130	05-MAY-21
Zirconium (Zr)-Dis	ssolved		101.3		%		70-130	05-MAY-21
NH3-L-F-CL	Water							
	50818 LCS		103.8		%		85-115	05-MAY-21
WG3529618-1 I Ammonia as N	МВ		<0.0050		mg/L		0.005	05-MAY-21
NO2-L-IC-N-CL	Water							
	13764							
WG3527135-2 Nitrite (as N)	LCS		99.9		%		90-110	29-APR-21
WG3527135-6 I Nitrite (as N)	LCS		105.1		%		90-110	29-APR-21
WG3527135-1 INitrite (as N)	МВ		<0.0010		mg/L		0.001	29-APR-21
WG3527135-5 INitrite (as N)	МВ		<0.0010		mg/L		0.001	29-APR-21
NO3-L-IC-N-CL	Water							
	13764 LCS		98.8		%		00.110	20 APR 24
, ,	LCS		101.8		%		90-110 90-110	29-APR-21 29-APR-21
	МВ		<0.0050		mg/L		0.005	29-APR-21
WG3527135-5 Nitrate (as N)	МВ		<0.0050		mg/L		0.005	29-APR-21
PH/EC/ALK-CL	Water							

Workorder: L2581831 Report Date: 10-MAY-21 Page 8 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH/EC/ALK-CL	Water							
Batch R5454752 WG3531386-2 LCS Conductivity (EC)	2		102.7		%		90-110	07-MAY-21
Hydroxide (OH)					mg/L			07-MAY-21
Alkalinity, Total (as Cat	CO3)		104.2		%		85-115	07-MAY-21
WG3531386-1 MB								
Conductivity (EC)			<2.0		uS/cm		2	07-MAY-21
Bicarbonate (HCO3)			<5.0		mg/L		5	07-MAY-21
Carbonate (CO3)			<5.0		mg/L		5	07-MAY-21
Hydroxide (OH)			<5.0		mg/L		5	07-MAY-21
Alkalinity, Total (as Ca	CO3)		<2.0		mg/L		2	07-MAY-21
SO4-L-IC-N-CL	Water							
Batch R5443764	ŀ							
WG3527135-2 LCS Sulfate (SO4)			98.4		%		85-115	29-APR-21
WG3527135-6 LCS Sulfate (SO4)			102.3		%		85-115	29-APR-21
WG3527135-1 MB Sulfate (SO4)			<0.050		mg/L		0.05	29-APR-21
WG3527135-5 MB Sulfate (SO4)			<0.050		mg/L		0.05	29-APR-21
TC-MPN-CL	Water							
Batch R5443962 WG3527299-4 MB MPN - Total Coliforms	2		<1		MPN/100mL		1	29-APR-21
TSS-L-CL	Water							
Batch R5450071	1							
WG3528883-2 LCS Total Suspended Solid	s		91.6		%		85-115	04-MAY-21
WG3528883-1 MB Total Suspended Solid	S		<1.0		mg/L		1	04-MAY-21
VH-HS-FID-CL	Water							
Batch R5452338 WG3530035-3 DUP Volatile Hydrocarbons		L2581831-1 <0.10	<0.10	RPD-NA	mg/L	N/A	30	04-MAY-21
WG3530035-2 LCS Volatile Hydrocarbons	(VH6-10)		110.7		%		70-130	04-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 9 of 10

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VH-HS-FID-CL	Water							
	52338							
WG3530035-1 Volatile Hydrocar	MB bons (VH6-10)		<0.10		mg/L		0.1	04-MAY-21
Surrogate: 3,4-Di	chlorotoluene		86.3		%		70-130	04-MAY-21

Workorder: L2581831 Report Date: 10-MAY-21 Page 10 of 10

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

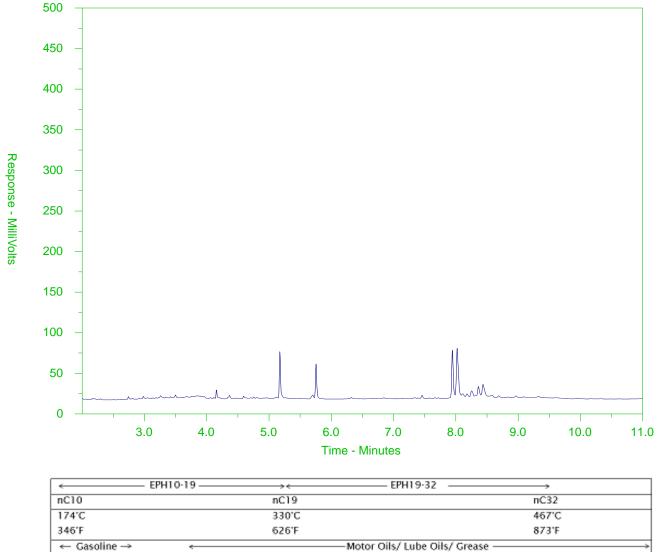
Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.


ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

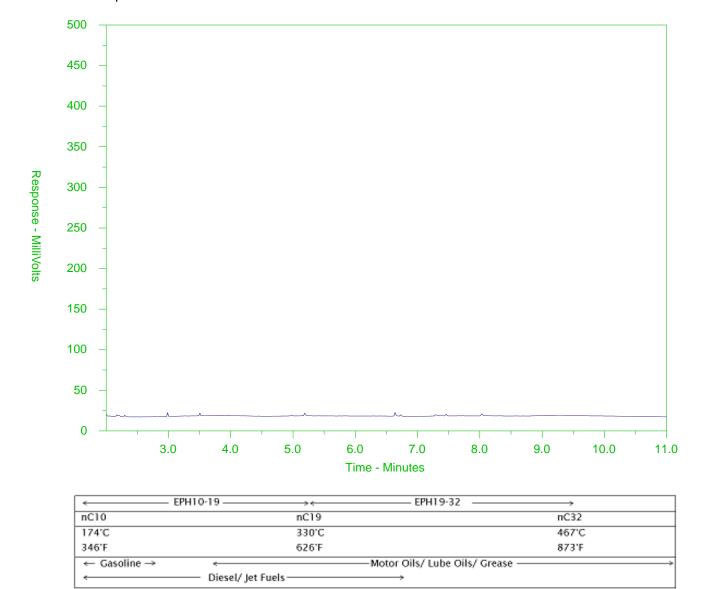
RIBUTION REPORT

ALS Sample ID: L2581831-1 Client Sample ID: E265104

Diesel/ Jet Fuels

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

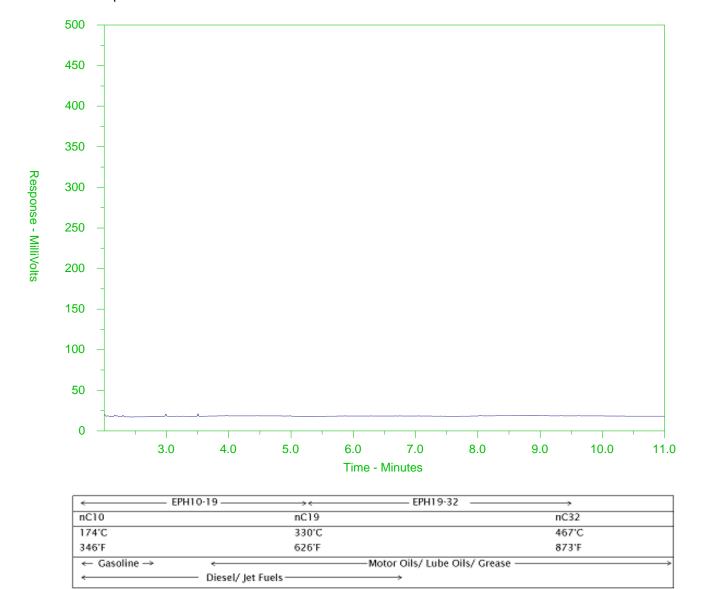
Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Printed on 5/6/2021 5:10:47 PM Page 1 of 1

ALS Sample ID: L2581831-2 Client Sample ID: E265105

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

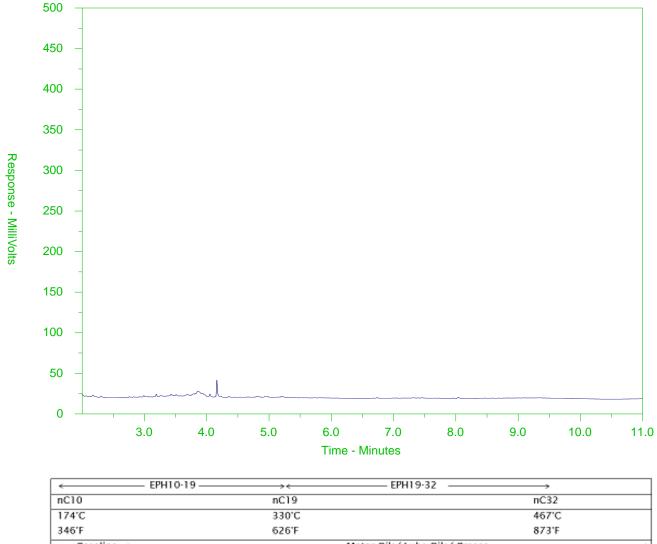
Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Printed on 5/6/2021 5:10:55 PM

ALS Sample ID: L2581831-3 Client Sample ID: E265106

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

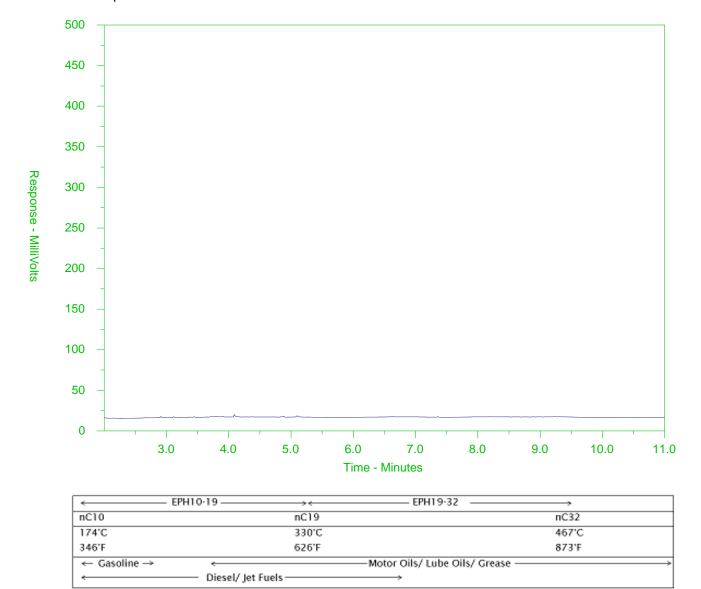
Printed on 5/6/2021 5:11:03 PM Page 1 of 1

ALS Sample ID: L2581831-4 Client Sample ID: MW6

← Gasoline → ← Motor Oils/ Lube Oils/ Grease → Diesel/ Jet Fuels → The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Printed on 5/6/2021 5:11:11 PM Page 1 of 1

ALS Sample ID: L2581831-5 Client Sample ID: MW7

The BC EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

A "-L-" in the sample ID denotes a low level sample. A "-S-" denotes a silica gel cleaned sample.

Note: This chromatogram was produced using GC conditions that are specific to the ALS Canada EPH method. Refer to the ALS Canada EPH Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at www.alsglobal.com.

Printed on 5/6/2021 5:23:50 PM Page 1 of 1

ALS

: 1 800 668 9878

Analytical Request Form

COC Number: 20 -

Page \ of \

	www.alagiobal.com																							
Report To	Contact and company name below will ap	pear on the final report	I	Reports /	Recipients				Ti	ımaroı	und Ti	ne (TA	T) Re	quest	ed									
Company:	Sperling Hansen Associates Inc.		Select Report F	Format: POF	☑ EXCEL 🗌 🛭	DD (DIGITAL)	√ Ro	outine [F	t] if red	eived b	y 3pm	M-F-n	surch	arges a	pply									
Contact:	Scott Garthwaite		Merge QC/QC	Reports with COA	VES 🗌 N	D N/A	□ 4 €	day [P4]	if rec	eived by	3pm 1	I-F - 20	% rust	surcha	arge m	inimum	1					_		
Phone:	778-471-7088						3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum						AFFIX ALS BARCODE LABEL HERE (ALS use only)											
	Company address below will appear on the fi	inal report	Select Distribut	tion: 🗹 EMAIL	MAIL [FAX	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum																	
Street:	1225 East Keith Road		Cmail 1 or Fay Sparthwaite@sperlinghansen.com				Same day [E2] If received by 10am M-S - 200% rush surcharge. Addition						oral											
City/Province:	North Vancouver, B.C.		Email 2					 fees may apply to rush requests on weekends, statutory holidays and non- routine tests 						7										
Postal Code:	V7J 1J3		Email 3				Date and Time Required for all E&P TATs:							dd	-mmn	1-yy h	ıh:mm	am/p	m					
Invoice To	Same as Report To	☑ NO		Invoice R	ecipients		T			For a	il tests	vith rusi	TATe	equest	ed, ple	se con	tact you	ır AM to	confirm	availat	ollity.			
	Copy of Invoice with Report YES	□ NO	Select Invoice	Distribution: 🕢 🗉	MAIL MAIL	FAX	Г							Ana	lysis	Requ	est	-						
Company:			Email 1 or Fax	chetherington@s	perlinghansen.co	m	श्र	П		ndicate	Filtered	(F), Pr	serve	(P) or	Filter	ed and	Preser	rved (F/P) below					۵	6
Contact:			Email 2	· · · · · · · · · · · · · · · · · · ·			1 🗓															₩.	용	
	Project Information		Oi	l and Gas Require	d Fields (client	use)	CONTAINER	Г												\Box	\Box		8	5
ALS Account #	/ Quote #:		AFE/Cost Center:	1	PO#		ΙÈ	ł														9	2	8
Job #:	20050 Hosmer "		Major/Minor Code:		Routing Code:		18	Ŧ	l						1					. 1		위	넁	8
PO / AFE:			Requisitioner:				_	<u>V</u>				~		- 1			sulfate		Ę			ON HOLD	[₹	\$
LSD:		· · · · · · · · · · · · · · · · · · ·	Location:				16	ductivity,				(F)		- 1			ag.		Coliforn				STORAGE REQUIRED	£
Al Siah War	k Order# (ALS use only):	· · · · · · · · · · · · · · · · · · ·	ALS Contact:	Dean Watt	Sampler: T. N	1.8.1	8	8		īţ.		Metals	1	1			oride		Total (ES	e G	SUSPECTED HAZARD (see notes)
AES Lab Wor	Couer # (ALS use only).		ALS COIRECT.	Dean Watt	Sampler. 1.1	MOD TO L	T CO	lemperature		kalinity		g	2	. <u>e</u>		Ŧ	₹	nitrite	and T	.		SAMPL	EXTENDED	S
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Type	2	<u> 6</u>	Anions	Total Alk	S	Dissolved	Hardnes	Ammonia	ĸ	ЕРНМР	fluoride,	nitrate,	页			₹	E	S
(ALS use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Campie Type	Ž	te	ş	μoμ	TSS	뚭	Ī	Ę	ВТЕХ	ᇤ	ĝ.	ujt	Fecal			જ	ŭ	S
	E265104			28-04-207	-	Groundwater	9	R	R	R	R	R	R	R	R	R	R	R	R					
	E265105		•	١,,	_	Groundwater	9	R	R	R	R	R	R	R	R	R	R	R	R					
	E265106			``	-	Groundwater	9	R	R	R	R	R	R	R	R	R	R	R	R					
	MVV6			\		Groundwater	9	R	R	R	R	R	R	R	R	R	R	R	R			\neg		
	MW7	-		١,	-	Groundwater	9	R	R	R	R	R	R	R	R	R	R	R	R					
				 		\ 	†	1		\vdash		_	\neg	_	_				_	$\neg \uparrow$	\dashv			
				 	 	 	├	 	-	Н	-		┰┼		\dashv									\vdash
		· •		 	<u> </u>	 	├	├		┼─┤				-					\dashv			\dashv		
		·		<u> </u>	 		ļ	ļ										-						
					ļ	ļ	<u> </u>	ļ						_										_
		-			·		<u> </u>																	
							1																	
																					\neg			
		Notes / Specify	Limits for result of	evaluation by selecti	ng from drop-dov	vn below	†			لـــــا		AMP	E RE	CEIP	T DE	TAIL	3 (AL	S use	only)			1		
Drinking	Water (DW) Samples¹ (client use)			xcel COC only)			Cool	ing Me	thod:		NONE		ICE	[] IO	E PACI	cs [FR	DZEN	[] @	OLING	INITIA	ATED	
Are samples taken from a Regulated DW System? British Columbia Contaminat							Subr	nissio	n Con	nment	s iden	ified o	n Sar	nple F	Recei	pt Not	ificati	on:	v	res	□N	Ю		
☐ YES ☑ NO British Columbia Approved and Working Water Quality Guid Are samples for human consumption/ use? ☐ YES ☑ NO				delines (MAY, 20	15)	Cook	er Cus	tody	Seals	intact:	Ī	YES	□ N	/A	Samp	le Cu	stody	Seals	Intact	t [YES		N/A	
Are samples for	human consumption/ use?	while i	also de do	ATA AM	(A)		IN	ITIAL	COOLE	R TEM	PERATI	RES º	С		-4		NAL C	DOLER	TEMP	ERATU	RES °	<u> </u>	<u> </u>	
	res 🗹 NO	1 4 www.	MONARY TRIBUTION (3 COCC)								7.65													
	SHIPMENT RELEASE (client us]	INITIAL SHIPMENT	RECEPTION (A	LS use only)						/FIN	AL S	HIPM	ENT	REC	PTIC	N (A	LS use	e only	<u>n</u>				
Released by:	Date:	/y Time:	Received by:		Date:		Time	2 :	Rec	eived	υ γ :)	117	Γ		Date		17				T	Tinte:	7.1	~~
TMUR		2021 7:00 PM	4		<u> </u>	V.000V	<u> </u>	0.15	7.00	6 0	_{//	Щ			١.	6	1/0	7				{}	<u> </u>	4
KELEK IO BACH	PAGE FOR ALS LOCATIONS AND SAMPLIF	NG INFURMATION		WH	TE - LABORATOR	TOUPY YEL	LOW -	ULIEN		~ 7	- 1	V				//	۲.	- 1				V	/ AUG 207	JOFRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

SAMPLES

ARE

SPREAT

BBWEEN

TWO COOLERS

Sperling Hansen Associates Inc.

ATTN: Scott Garthwaite #8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 28-JUL-21

Report Date: 05-AUG-21 17:37 (MT)

Version: FINAL REV. 2

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2619475

Project P.O. #:

NOT SUBMITTED

Job Reference:

10024,8971

C of C Numbers: Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2619475 CONTD....

PAGE 2 of 4 05-AUG-21 17:37 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2619475-1 GROUNDWATER 27-JUL-21 12:00 E265104	L2619475-2 3ROUNDWATEF 27-JUL-21 12:00 E265105	L2619475-3 GROUNDWATER 27-JUL-21 12:00 E265106	L2619475-4 GROUNDWATEF 27-JUL-21 12:00 E265107 (MW6)	L2619475-5 GROUNDWATER 27-JUL-21 12:00 E265108 (MW7)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	336	263	279	284	323
	Temperature (Degree C)	22.3	22.0	21.9	21.8	21.8
	Total Suspended Solids (mg/L)	6.0	20.6	114	157	1790
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	329	222	250	417	582
	Ammonia as N (mg/L)	5.46	0.165	0.0139	47.9	84.6
	Bicarbonate (HCO3) (mg/L)	401	271	305	509	710
	Carbonate (CO3) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Chloride (CI) (mg/L)	89.9	2.11	1.87	122	178
	Conductivity (EC) (uS/cm)	849	461	483	1120	1520
	Fluoride (F) (mg/L)	0.110	0.146	0.143	0.19	0.235
	Hydroxide (OH) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Nitrate (as N) (mg/L)	0.307	0.0301	0.0120	0.381	0.661
	Nitrite (as N) (mg/L)	0.0061	0.0020	<0.0010	0.0226	0.0388
	pH (pH)	7.72	7.87	7.80	7.57	7.45
	Sulfate (SO4) (mg/L)	5.29	43.4	38.5	4.06	2.96
Bacteriological Tests	Coliform Bacteria - Fecal (CFU/100mL)	<1	<1	<100 DLM	<100 DLM	<100 DLM
	MPN - Total Coliforms (MPN/100mL)	1	<1	9	3	3
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Calcium (Ca)-Dissolved (mg/L) Magnesium (Mg)-Dissolved (mg/L)	106	77.9	82.8	90.7	103
		17.3	16.6	17.7	14.0	16.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 4

05-AUG-21 17:37 (MT)

L2619475 CONTD....

Reference Information

Version: FINAL REV. 2

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Chloride (CI)	MS-B	L2619475-1, -2, -3, -4, -5
Matrix Spike		Ammonia as N	MS-B	L2619475-1, -2, -3, -4, -5
Qualifiers for Individual Parameters List		sted:		
Qualifier	Description			

DLM Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity). MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF **APHA 9222D**

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

APHA 2340 B HARDNESS-CALC-CL Water Hardness

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

MET-DIS-ICP-CL Dissolved Metals by ICPOES APHA 3030B/EPA 6010D Water

"This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (APHA Method 3030B) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

NH3-L-F-CL Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Water NO3-L-IC-N-CL Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320 PH/EC/ALK-CL

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

Sulfate in Water by IC EPA 300.1 (mod) SO4-L-IC-N-CL

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

APHA 9223B TC-MPN-CL Water Total Coliform

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

Recommended Holding Time:

Sample: 1 day

Reference: APHA

TEMP-CL Water Temperature APHA 2550-Thermometer TSS-L-CL Water Total Suspended Solids APHA 2540 D-Gravimetric

Reference Information

L2619475 CONTD.... PAGE 4 of 4 05-AUG-21 17:37 (MT)

Version: FINAL REV. 2

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2619475 Report Date: 05-AUG-21 Page 1 of 4

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: Scott Garthwaite

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-L-IC-N-CL	Water							
Batch R553	33137							
WG3586638-9 Chloride (CI)	DUP	L2619475-5 178	177		mg/L	0.2	20	28-JUL-21
WG3586638-8 Chloride (CI)	LCS		100.9		%		85-115	28-JUL-21
WG3586638-7 Chloride (CI)	МВ		<0.10		mg/L		0.1	28-JUL-21
WG3586638-10 Chloride (CI)	MS	L2619475-5	N/A	MS-B	%		-	28-JUL-21
F-L-IC-CL	Water							
Batch R553	33137							
WG3586638-9 Ifluoride (F)	DUP	L2619475-5 0.235	0.241		mg/L	2.5	20	28-JUL-21
WG3586638-8 Fluoride (F)	LCS		100.7		%		85-115	28-JUL-21
WG3586638-7 If Invariant Fluoride (F)	МВ		<0.020		mg/L		0.02	28-JUL-21
WG3586638-10 I Fluoride (F)	MS	L2619475-5	112.7		%		75-125	28-JUL-21
FCC-MF-CL	Water							
Batch R553	33896							
WG3587028-1 I Coliform Bacteria	MB - Fecal		<1		CFU/100mL		1	28-JUL-21
MET-DIS-ICP-CL	Water							
Batch R554	13880							
	LCS	TMRM						
Calcium (Ca)-Diss			99.9		%		80-120	04-AUG-21
Magnesium (Mg)-			98.9		%		80-120	04-AUG-21
WG3589956-1 Calcium (Ca)-Diss	MB solved		<0.10		mg/L		0.1	04-AUG-21
Magnesium (Mg)-			<0.10		mg/L		0.1	04-AUG-21
NH3-L-F-CL	Water							
	37382							
	DUP	L2619475-2						
Ammonia as N		0.165	0.159		mg/L	3.6	20	30-JUL-21
WG3588117-2 Ammonia as N	LCS		93.2		%		85-115	30-JUL-21

Workorder: L2619475 Report Date: 05-AUG-21 Page 2 of 4

est		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-L-F-CL		Water							
Batch R55 WG3588117-1	537382 MB								
Ammonia as N	IVID			<0.0050		mg/L		0.005	30-JUL-21
WG3588117-4 Ammonia as N	MS		L2619475-2	N/A	MS-B	%		-	30-JUL-21
NO2-L-IC-N-CL		Water							
Batch R5	533137								
WG3586638-9 Nitrite (as N)	DUP		L2619475-5 0.0388	0.0387		mg/L	0.3	20	28-JUL-21
WG3586638-8	LCS								
Nitrite (as N)				101.7		%		90-110	28-JUL-21
WG3586638-7 Nitrite (as N)	MB			<0.0010		mg/L		0.001	28-JUL-21
WG3586638-10 Nitrite (as N)	MS		L2619475-5	108.2		%		75-125	28-JUL-21
IO3-L-IC-N-CL		Water							
Batch R55	533137								
WG3586638-9 Nitrate (as N)	DUP		L2619475-5 0.661	0.660		mg/L	0.3	20	28-JUL-21
WG3586638-8 Nitrate (as N)	LCS			103.0		%		90-110	28-JUL-21
WG3586638-7 Nitrate (as N)	MB			<0.0050		mg/L		0.005	28-JUL-21
WG3586638-10 Nitrate (as N)	MS		L2619475-5	106.6		%		75-125	28-JUL-21
PH/EC/ALK-CL		Water							
Batch R55	544753								
WG3590813-7	DUP		L2619475-5	7.47		-1.I			
pH	~ \		7.45	7.47	J	pH C/a-ra	0.02	0.2	04-AUG-21
Conductivity (EC			1520	1530		uS/cm	0.1	10	04-AUG-21
Bicarbonate (HC			710	735	000 114	mg/L	3.5	20	04-AUG-21
Carbonate (CO3			<5.0	<5.0	RPD-NA	mg/L	N/A	20	04-AUG-21
Hydroxide (OH)		20)	<5.0	<5.0	RPD-NA	mg/L	N/A	20	04-AUG-21
Alkalinity, Total		Jo)	582	603		mg/L	3.5	20	04-AUG-21
WG3590813-4 Conductivity (EC				98.3		%		90-110	04-AUG-21
Alkalinity, Total		O3)		105.2		%		85-115	04-AUG-21
WG3590813-1	мв	,						55 110	5 L I

TSS-L-CL

Batch

Water

R5534796

WG3586182-2 LCS

WG3586182-1 MB Total Suspended Solids

Total Suspended Solids

Quality Control Report

Page 3 of 4

Workorder: L2619475 Report Date: 05-AUG-21

Test Units Matrix Reference Result Qualifier **RPD** Limit Analyzed PH/EC/ALK-CL Water **Batch** R5544753 WG3590813-1 MB Conductivity (EC) <2.0 uS/cm 2 04-AUG-21 Bicarbonate (HCO3) <5.0 mg/L 5 04-AUG-21 Carbonate (CO3) <5.0 mg/L 5 04-AUG-21 Hydroxide (OH) <5.0 mg/L 5 04-AUG-21 Alkalinity, Total (as CaCO3) <2.0 mg/L 2 04-AUG-21 SO4-L-IC-N-CL Water Batch R5533137 WG3586638-9 DUP L2619475-5 Sulfate (SO4) 2.96 2.94 mg/L 0.6 20 28-JUL-21 WG3586638-8 LCS Sulfate (SO4) 103.1 % 85-115 28-JUL-21 WG3586638-7 MB Sulfate (SO4) < 0.050 mg/L 0.05 28-JUL-21 WG3586638-10 MS L2619475-5 Sulfate (SO4) 108.1 % 75-125 28-JUL-21 TC-MPN-CL Water **Batch** R5533837 WG3587016-1 MB MPN - Total Coliforms <1 MPN/100mL 1 28-JUL-21 **TEMP-CL** Water Batch R5544753 WG3590813-7 DUP L2619475-5 Temperature 21.8 21.8 Degree C 0.0 25 04-AUG-21

96.3

<1.0

%

mg/L

85-115

1

29-JUL-21

29-JUL-21

Workorder: L2619475 Report Date: 05-AUG-21 Page 4 of 4

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

L2619475-COFC

ody (COC) / Analytical Request Form

COC Number: 20 -

Page 1 of

ALS

www.alsolobal.com

ınada Toll Free: 1 800 668 9878

(ALS)	www.aisgiobal.com				•																	
eport To	Contact and company name below will appe	ear on the final report		Reports / R	Recipients '				Tu	ımaroı	und Tim	e (TAT)	Requ	ested				5				
company:	Sperling Hansen Associates Inc.	Sel	lect Report Fo	rmat: PDF	EXCEL !	EDD (DIGITAL)	Rou	itine [R]	if receiv	ved by 3	pm M-F	- no sur	harges	apply			1					
ontact:	Scott Garthwaite	N	/lerge QC/QCI	Reports with COA	YES _	NO N/A								harge mir			۱.					
hone:	778-471-7088	×	Compare Res	ults to Criteria on Report -	provide details below	if box checked								harge mi			l Ar	FIX AL	S BARCO ALS us		ELHE	KE
	Company address below will appear on the fina	al report . Sel	 lect Distributio	on: 🔀 EMAIL	MAIL [FAX								tharge mi harge mi			ĺ					
treet:	1225 East Keith Road	Em	ail 1 or Fax	sgarthwaite@sperlin	nghansen.com			ne dav (E	2) if re	ceived I	ov 10am	M-S - 20	10% rus	sh surcha	rge. Addit	tional fer	<u> </u>					
ity/Province:	North Vancouver, B.C.		rail 2	chetherington@spe			T may	apply t	o tusti t	ednesis	on week	enas, sta	utory n	otidays ai	a non-ro	utine tes	s					
ostal Code:	V7J 1J3	Em	nail 3				<u> </u>	Date a	nd Time	Requi	red for a	I E&P TA	Ts:	_ا_		d	d-mmr	n-yy h	nh:mm an	1/pm		
voice To	Same as Report To YES	X}N0		Invoice Re	ecipients					Fo	r all tests	with rush	TATs re	quested, p	lease cor	itact your	: AM to c	onfirm a	vailability.			
	Copy of Invoice with Report X YES	NO Sel	lect Invoice Di	stribution: 🔀 E	MAIL MAIL	FAX	<u>L</u>							Analys	is Req	uest						
ompany:	1	Em	nail 1 or Fax	chetherington@spe	rlinghansen.com		S	L,		Indica	te Filtered	i (F), Pre	served	(P) or Filte	red and	Preserve	;d (F/P)	below			ا ۾ ا	ŝ
ontact:		Em	nail 2				1 12 1				_	_	_	_		₩	<u> </u>	igsquare		4	🖺	notes)
	Project Information		O	il and Gas Require		ise)	CONTAINERS											ı İ	.	1_	STORAGE REQUIRED	9
LS Account#	/ Quote #:	AFE	Cost Center:		PO#		1₽1	_	1		-							ıl		HOLD	2	S.
ob #:	20050 Hosmer	Majo	or/Minor Code:		Routing Code:		161	P.		1	-							,	. 1	1운	형	18
O / AFE:		Re	quisitioner:] ::	ctivit		ŀ	1					sulfate		E D	.	Z	😤	Ş
SD:		Loc	cation:] 6	conductivity,	l	į	Ì							Colifor			S	D HAZARD
ALS Lab Wor	k Order # (ALS use only):	AL	S Contact:	Dean Watt	Sampler:	тм	NUMBER			kalinity			a .	e l		, chloride,	nitrite	and Total		SAMPLES	EXTENDED	SUSPECTE
ALS Sample # (ALS use only)	Sample Identification	and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:m:n)	Sample Type	S	emperature,	Anions	Total Alkalinity	TSS		. Idinicas	A-mmonia		fluoride,	nitrate,	Fecal a		SAM	EXTE	SUSP
	E265104			27.07.21	- :	Groundwater	3	R	R	R	R	1	₹	R		R	R	R			\Box	Г
	E265105			"	- 1	Groundwater	3	R	R	R	R		₹	R	1	R	R	R		1		Г
	E265106			41		Groundwater	3	R	R	R	R		₹	R	1	R	R	R				\Box
· ·	E265107 (MW6)			- "	-	Groundwater	3	·R	R	R	R		-	R T	+	R	R	R		1	Н	_
				- "	 	Groundwater	12	R	R	R	R			R	+-	R	R	R		+	Н	\vdash
	E265108 (MW7)	<u> </u>			ļ <u>.</u>	Groundwater	12	"					`+	\vdash	+-	+``	Ë	-`` +		+	\vdash	\vdash
												_	+		+	 	 			—	┢┈┤	<u> </u>
														4	┼	└	igspace	-		┷	igspace	<u> </u>
																	$oldsymbol{\sqcup} J$				Ш	
						1				1						'		.		1	1 1	i
															T.					T		1
											-+		\top						-	1		
					 		1	-			- +		+	+-	+	+-		$\neg \neg$		+		_
	<u> </u>	Notes / Consider Lin	wite for requit	evaluation by selecting	a from drop down	- balaw	+	L				SAMPL	E RE	EIPT I	ETAIL	S (AL	use	only)				
Drinkin	ig Water (DW) Samples¹ (client use)	Notes / Specify Lin		Excel COC only)	ig from drop-dowr	n below	Coolir	na Mei	hod:	П	NONE			ICE			ROZEN	- 7/ F	7 coo	ING INIT	IATED	-
re samples take	n from a Regulated DW System?	British Columbia Contaminate	d Sites Regul	ation Stage 10 Amen	dment (NOV, 201	7)				nents i				Receip		ation:		\Box	YES	NO	-	
•		British Columbia Approved an	d Working Wa	ter Quality Guideline	s (MAY, 2015)			er Cust				Т	YES		Sam		stody {	eals l	ntact:		ES 🗍	N/A
	numan consumption/ use?							- 1	NIITIAL	COOLE	R TEMP	RATUR	s°C		\perp	T	FINAL	COOLEF	RTEMPERA	TURES °C		
	es 🔀 NO				1.						,	/			1	7	7		.		ĺ	
	SHIPMENT RELEASE (client use)		<u> </u>	INITIAL SHIPMEN	RECEPTION (A	ALS use only)						FIN	AL S	HIPMEI	_			S use	only)			
Released by:			eceived by:	-	Date:	ŧ	Time:	1	Rece	ived b	y:///	1		Dat	(\$	10	7		Time	>, ,	70
1		LUL LIMPT					1			ā	11 / 1			1 6		/1/	-					~

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Sperling Hansen Associates Inc.

ATTN: Scott Garthwaite #8 - 1225 East Keith Road North Vancouver BC V7J 1J3 Date Received: 10-NOV-21

Report Date: 25-NOV-21 16:37 (MT)

Version: FINAL

Client Phone: 604-986-7723

Certificate of Analysis

Lab Work Order #: L2661089

Project P.O. #:

NOT SUBMITTED

Job Reference:

20050 HOSMER

C of C Numbers: Legal Site Desc:

Patryk Wojciak, B.Sc., P.Chem. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2661089 CONTD....

PAGE 2 of 4 25-NOV-21 16:37 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2661089-1 Groundwater 09-NOV-21 12:00 E265104	L2661089-2 Groundwater 09-NOV-21 12:00 E265105	L2661089-3 Groundwater 09-NOV-21 12:00 E265106	L2661089-4 Groundwater 09-NOV-21 12:00 E265107 (MW6)	L2661089-5 Groundwater 09-NOV-21 12:00 E265108 (MW7)
Grouping	Analyte					
WATER						
Physical Tests	Hardness (as CaCO3) (mg/L)	392	488	362	591	811
	Temperature (Degree C)	20.6	20.1	19.9	19.9	20.0
	Total Suspended Solids (mg/L)	5.2	601	1570	2310	3610
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	367	398	325	509	569
	Ammonia as N (mg/L)	3.39	4.07	0.0150	33.2	64.3
	Bicarbonate (HCO3) (mg/L)	447	486	396	621	694
	Carbonate (CO3) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Chloride (CI) (mg/L)	85.8	96.7	3.87	181	232
	Conductivity (EC) (uS/cm)	920	958	604	1680	2540
	Fluoride (F) (mg/L)	0.139	0.19	0.151	0.38	0.19
	Hydroxide (OH) (mg/L)	<5.0	<5.0	<5.0	<5.0	<5.0
	Nitrate and Nitrite (as N) (mg/L)	2.36	0.285	0.163	57.6	135
	Nitrate (as N) (mg/L)	2.36	0.285	0.163	57.6	135
	Nitrite (as N) (mg/L)	0.0012	<0.0050	<0.0010	0.0288	0.0589
	pH (pH)	7.55	7.51	7.56	7.29	7.28
	Sulfate (SO4) (mg/L)	5.61	37.6	53.8	13.8	11.5
Bacteriological Tests	Coliform Bacteria - Fecal (CFU/100mL)	<1	<100 DLA	<100 DLA	<100 DLA	<100 DLA
	MPN - Total Coliforms (MPN/100mL)	<1	<10 DLM	<10 DLM	<10 DLM	<10 DLM
Dissolved Metals	Dissolved Metals Filtration Location	LAB	LAB	LAB	LAB	LAB
	Calcium (Ca)-Dissolved (mg/L)	122	147	107	194	265
	Magnesium (Mg)-Dissolved (mg/L)	20.8	29.2	22.9	25.9	36.2 DLDS

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2661089 CONTD....

PAGE 3 of 4

25-NOV-21 16:37 (MT)

Version: FINAL

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLA	Detection Limit adjusted for required dilution
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

F-L-IC-CL Water Fluoride APHA 4110 B-Ion Chromatography

FCC-MF-CL Water Fecal Coliform Count-MF APHA 9222D

This analysis is carried out using procedures adapted from APHA Method 9222 "Membrane Filter Technique for Members of the Coliform Group". Coliform bacteria is enumerated by culturing and colony counting. A known sample volume is filtered through a 0.45 micron membrane filter. The test involves an initial 24 hour incubation at 44.5 degrees C of the filter with the appropriate growth medium. This method is specific for thermotolerant bacteria (Fecal) and is used for non-turbid water with a low background bacteria level.

HARDNESS-CALC-CL Water Hardness APHA 2340 B

Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.

MET-DIS-ICP-CL Water Dissolved Metals by ICPOES APHA 3030B/EPA 6010D

"This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (APHA Method 3030B) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL Water Nitrate in Water by IC (Low Level) EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

PH/EC/ALK-CL Water pH, Conductivity and Total Alkalinity APHA 4500H,2510,2320

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

SO4-L-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

TC-MPN-CL Water Total Coliform APHA 9223B

This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

Recommended Holding Time:

Sample: 1 day Reference: APHA

TEMP-CLWaterTemperatureAPHA 2550-ThermometerTSS-L-CLWaterTotal Suspended SolidsAPHA 2540 D-Gravimetric

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

L2661089 CONTD....

PAGE 4 of 4

25-NOV-21 16:37 (MT)

Version: FINAL

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 CL
 ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2661089 Report Date: 25-NOV-21 Page 1 of 3

Client: Sperling Hansen Associates Inc.

#8 - 1225 East Keith Road North Vancouver BC V7J 1J3

Contact: Scott Garthwaite

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-L-IC-N-CL	Water							
Batch R5643576								
WG3657052-2 LCS Chloride (CI)			102.0		%		85-115	10-NOV-21
WG3657052-1 MB Chloride (CI)			<0.10		mg/L		0.1	10-NOV-21
F-L-IC-CL	Water							
Batch R5643576								
WG3657052-2 LCS Fluoride (F)			100.0		%		85-115	10-NOV-21
WG3657052-1 MB Fluoride (F)			<0.020		mg/L		0.02	10-NOV-21
FCC-MF-CL	Water							
Batch R5642844								
WG3656837-1 MB								
Coliform Bacteria - Feca	al		<1		CFU/100mL		1	10-NOV-21
MET-DIS-ICP-CL	Water							
Batch R5647784								
WG3658553-2 LCS			95.0		0/		00.400	45 NOV 04
Calcium (Ca)-Dissolved Magnesium (Mg)-Dissol					%		80-120	15-NOV-21
	iveu		95.8		70		80-120	15-NOV-21
WG3658553-1 MB Calcium (Ca)-Dissolved			<0.10		mg/L		0.1	15-NOV-21
Magnesium (Mg)-Dissol			<0.10		mg/L		0.1	15-NOV-21
NH3-L-F-CL	Water				-			
Batch R5653860								
WG3660828-22 LCS								
Ammonia as N			105.0		%		85-115	17-NOV-21
WG3660828-21 MB								
Ammonia as N			<0.0050		mg/L		0.005	17-NOV-21
NO2-L-IC-N-CL	Water							
Batch R5643576								
WG3657052-2 LCS Nitrite (as N)			96.6		%		90-110	10-NOV-21
WG3657052-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	10-NOV-21
NO3-L-IC-N-CL	Water							

Quality Control Report

Workorder: L2661089

Report Date: 25-NOV-21 Page 2 of 3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-CL	Water							
Batch R5643576								
WG3657052-2 LCS Nitrate (as N)			101.9		%		90-110	10-NOV-21
WG3657052-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	10-NOV-21
PH/EC/ALK-CL	Water							
Batch R5645076 WG3657576-5 LCS								
Conductivity (EC)	22/		101.8		%		90-110	11-NOV-21
Alkalinity, Total (as CaCC WG3657576-4 MB	Jo _j		97.9		%		85-115	11-NOV-21
Conductivity (EC)			<2.0		uS/cm		2	11-NOV-21
Bicarbonate (HCO3)			<5.0		mg/L		5	11-NOV-21
Carbonate (CO3)			<5.0		mg/L		5	11-NOV-21
Hydroxide (OH)			<5.0		mg/L		5	11-NOV-21
Alkalinity, Total (as CaCC	03)		<2.0		mg/L		2	11-NOV-21
SO4-L-IC-N-CL	Water							
Batch R5643576								
WG3657052-2 LCS Sulfate (SO4)			103.1		%		85-115	10-NOV-21
WG3657052-1 MB Sulfate (SO4)			<0.050		mg/L		0.05	10-NOV-21
TC-MPN-CL	Water							
Batch R5642780								
WG3656823-1 MB MPN - Total Coliforms			<1		MPN/100mL		1	10-NOV-21
TSS-L-CL	Water							
Batch R5648777								
WG3657247-4 LCS Total Suspended Solids			94.3		%		85-115	13-NOV-21
WG3657247-3 MB Total Suspended Solids			<1.0		mg/L		1	13-NOV-21

Quality Control Report

Workorder: L2661089 Report Date: 25-NOV-21 Page 3 of 3

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

L2661089-COFC

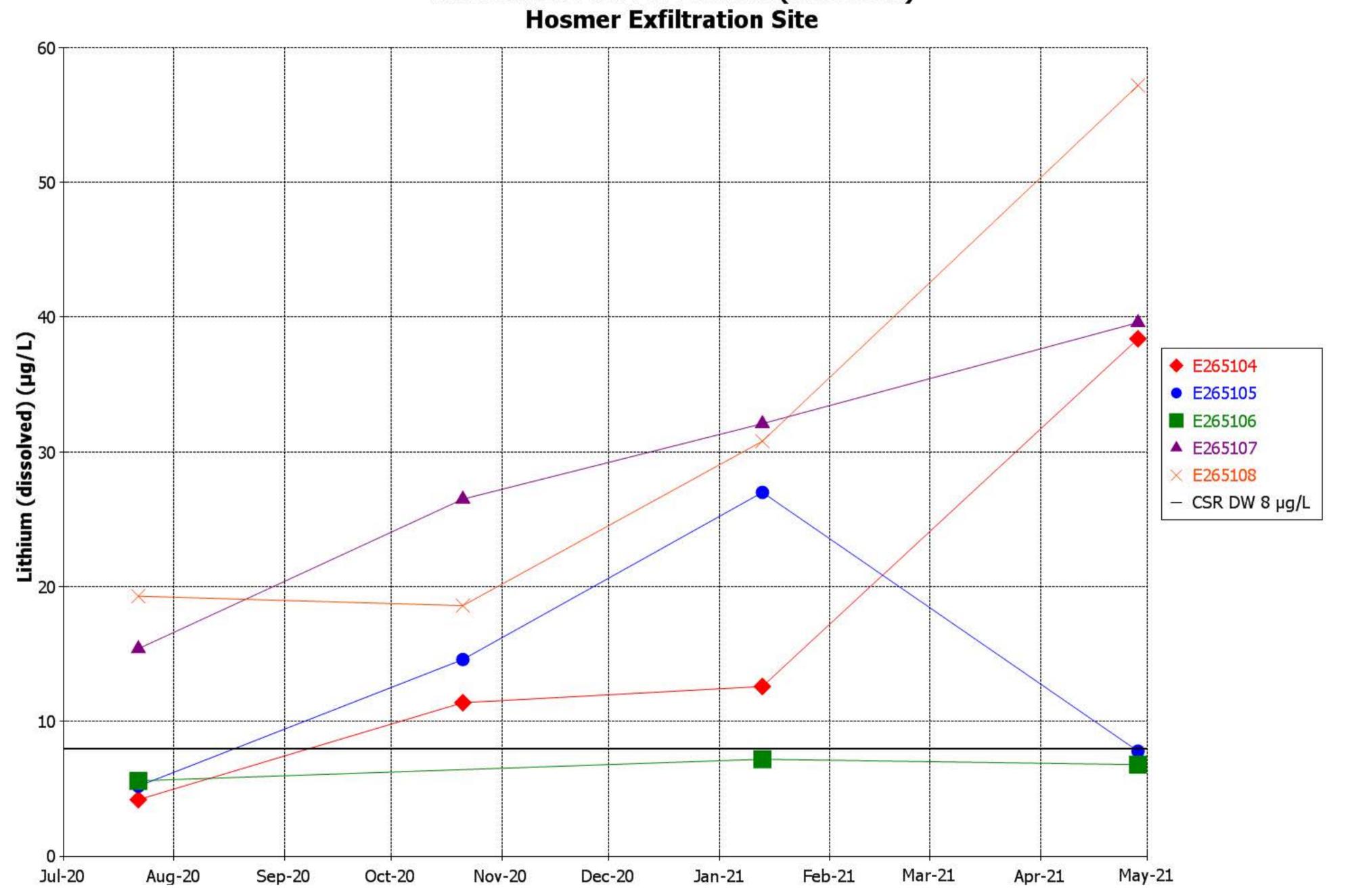
Canada Toll Free: 1 800 668 9878

	Time:				Date:	D			7.	ed by	Received by:		Mile	/	Date:	S. Car	Received by:	Ime	Calc.		
		FINAL SHIPMENT RECEPTION (ALS use only)	ALS	CEPTION	NT REC	PWE	AL SH	Ę				\	-		RECEPTION (AL	INITIAL SHIPMENT RECEPTION (ALS use only)	1		Cim men secase (chem use)	Out MENT NO	Released hv:
											1								T >0T /0T /0T	YES NO	
□ N/A	FINAL COOLER TEMPERATURES °C	Sample Custody Seals Intact	CCO Se	npie Custe		N/A	URES &	RATU	INITIAL COOLER TEMPERATURES C	OLER	INITIAL COOLER TEM	INI CUSTO	Coolei						se?	we samples for human consumption/ use?	ve samples for
	8	□ YES		Submission Comments identified on Sample Receipt Notification:	ceipt N	ole Re	Sami	fied or	identif	nents	Comm	SSION	Submi	(17)	elines (MAY, 2015	Vater Quality Guide	ved and Working W	British Columbia Approved and Working Water Quality Guidelines (MAY, 2015)		YES NO	
- CE	COOLING INITIATED	000	2	FROZEN	ICE PACKS	ice	i i		NONE		mod:	Met	Cooling Method:		nendment (NOV	ulation Stage 10 Ar	minated Sites Requ	British Columbia Contaminated Sites Regulation Stage 10 Amendment (NOV 2017)	V System?	\re samples taken from a Regulated DW System?	re samples tak
		mly)	se or	SAMPLE RECEIPT DETAILS (ALS use only)	DETAIL	THE	E REC	F	2				?	below	g from drop-down	t evaluation by selectin	Notes / Specity Limits for result evaluation by selecting from drop-down below	Notes / Specify	1 (client use)	Drinking Water (DW) Samples¹ (client use)	Drinking
H					H	\vdash	+	1			-										
+			+										-								
			+-			-															
		70	7	77		Z	70		Z	Z Z	Z	N N	166	Groundwater		j					
		7	7	7		7	7	-	7	2	2	2	×	Cicaldadici						E265108 (MW7) •	^
-		7	+	+	+	7	+	1	0 :	0 :	0 :	0	4	Groundwater		5				E265107 (MW6) .	ک
+		0 :	+	+	+	7	+		70	70	70	~	Ä	Groundwater		1,				E265106 •	تب
+	1	20	+	+	+	~	70	1	7	70	70	70	ui i	Groundwater		111				E265105 ·	~
+	+	Σ F	\dashv	\dashv	+	~	-	4	7	מ	\dashv	ᄱ	W	Groundwater		12.11.90				E265104	, -
_	-	ecal	nitrate	-	_	Ammo	Hardn		TSS	Total	Anion	tempe	NU	Sample Type	(hh:mm)	(dd-mmm-yy)		(This description will appear on the report)	This description will		(ALS use only)
_	_	and	_	-	_	onia	_			Alka		eratu	ME		Time	Date		Sample Identification and/or Coordinates	ample Identification	S	ALS Sample #
ED ST	LES	Total Co		nloride, :						llinity		ire, cond	BER (TM	Sampler:	Dean Watt	ALS Contact:		only):	ALS Lab Work Order # (ALS use only):	ALS Lab Wor
_	_	olifor	nie.	sulfat								ductiv	OF				Location:				LSD:
_	_	m		te								ity,	CC				Requisitioner:				PO / AFE:
	_											рН	ON		Routing Code:		Major/Minor Code:			20050 Hosmer	Job #
_	_				_								TA		PO#		AFE/Cost Center:		G 89723	# / Quote #:	ALS Account # / Quote #:
_		-	+		+	1	1	1	1		1	1	IN	se)	f Fields (client u	Oil and Gas Required Fields (client use)			Project Information	Projec	
_		Delow	197	more (1) i reserved (1) of Filtered alld Preserved (1) below	- E	3	0961 460	1 1 1	- 100]		ER		d		Email 2				Contact:
				duest	(D) or Filtered and Broat		handas	D Pre	lbered	dicate			s	- 11	erlinghansen.com	on@	Email 1 or Fax				Company:
	y sindy	Analyzis Dograph				And I							T	FAX	EMAIL MAIL	S.	Select Invoice Distribution:	No	Report 🖸 YES	Copy of Invoice with Report	
	a canquis	war AM to confirm qualitability		ontect war	niegeo	L	TATE	ith rush	tests w	For a					ecipients	Invoice Recipients		NO	✓ YES	Same as Report To	Invoice To
	and and	bis on	7				TATE	HE&P	Date and Time Required for all E&P TATS	Requir	Time i	ate and	0							V7J 1J3	Postal Code:
				fees may apply to rush requests on weekends, statutory holidays and non-	holidays	tatutory	kends, s	on wee	xquests c	rush re	pply to r	fees may app	i i i i i i i i i i i i i i i i i i i		verlinghansen.com	chetherington@sperlinghansen.com	- 1		C.	North Vancouver, B.C.	City/Province:
				1 day [E] if received by 3pm M-F - 100% rush surcharge minimum Same day [E2] if received by 10am M-S - 200% rush surcharge Additional	rge minin) surcha	0% rush	m 10.	3pm M-	eceiver	if receiv.	eday[]	Sam Sam		linghansen.com	<u>=</u>	Email 1 or Fax		ĬŎ.	1225 East Keith Road	Street:
	(ALS use only)	(ALS	W.	mum .	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	1 surcha	0% rush	1F- 5	3pm 14	ived by) if recei	γ [P2]	□ 2 da	:AX	MAIL FAX	ion: 🗸 EMAIL	Select Distribution:	final report	ow will appear on the	Company address below will appear on the final report	
	AFFIX ALS BARCODE I AREI HERE	X ALS BAR	AFE CERT		3 day [P3] if received by 3pm M-F - 20% rush surcharge minimum	Surcha	5% rush	1-F - 20	3 day [P3] if received by 3pm M-F-	ived by	if neces	× [F3]	9 t	w if boy checked	- Dipovide details helos	Compare Results to Criteria on Report - provide defails below if how checked	Compare Result			778-471-7088	Phone:
					ylq	arges at	Routine [R] if received by 3pm M-F - no surcharges apply	M-F- n	√.3pm ^	awed by] if rece	tine [R	Ro	-		T WITH COA	Merge OC/OCI			Scott Garthwaite	Contact:
						ate.	Turnaround Time (TAT) Requested	THE (TA	and Tin	marou	 =		T]	Reports /	Select Report Formst	ssociates Inc.	sociates Inc.	Sperling Hansen Associates Inc.	Company:

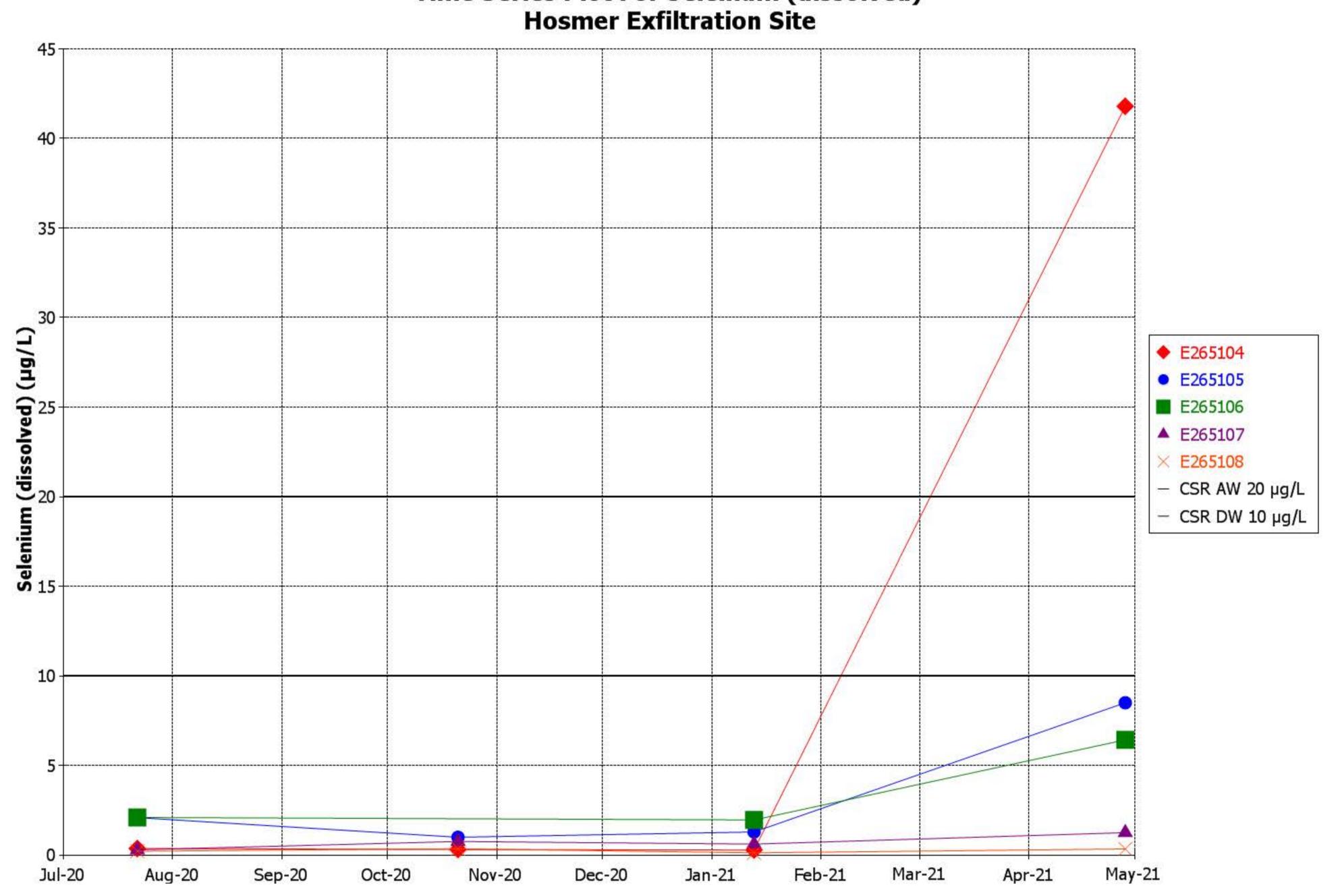
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

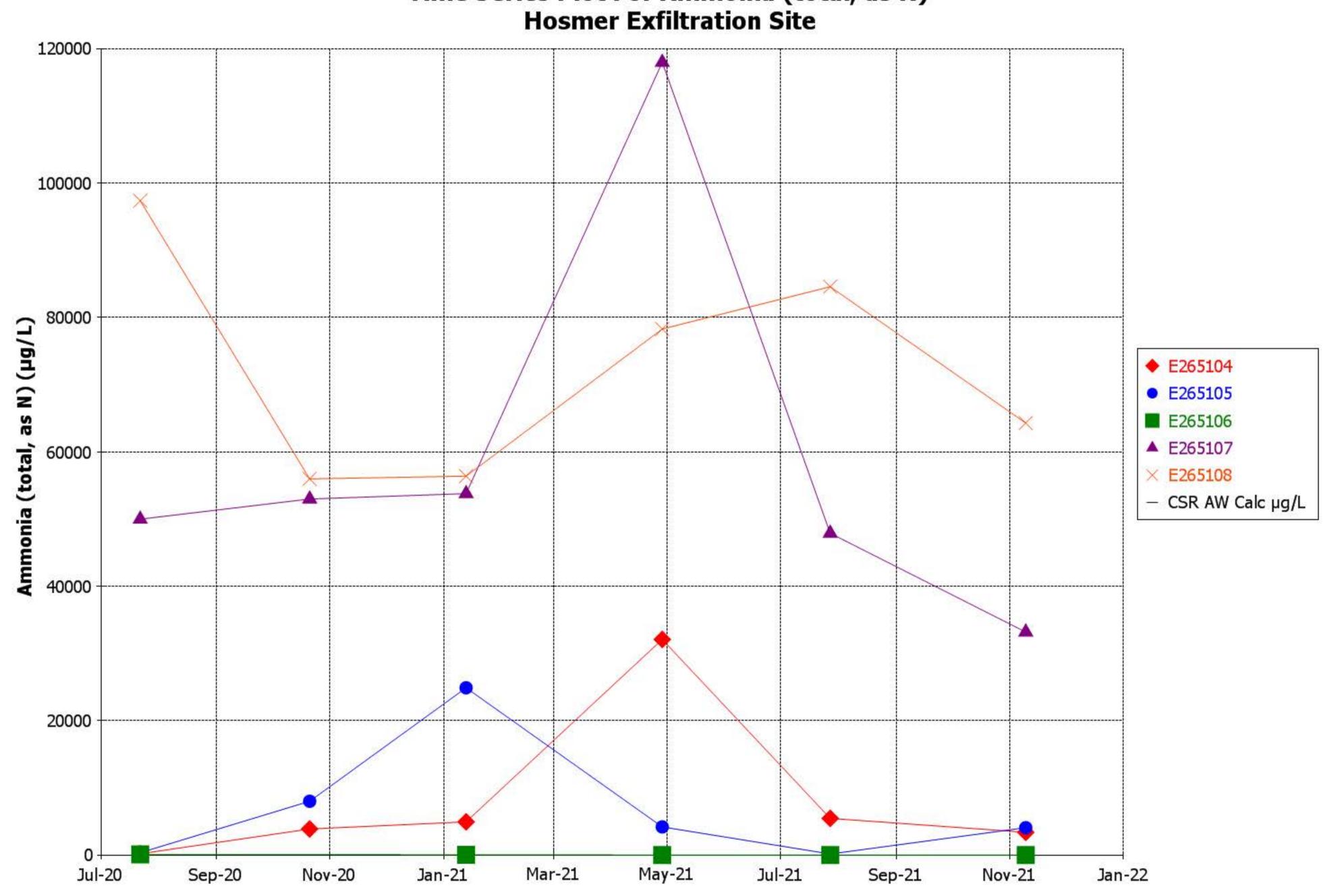
WHITE - LABORATORY COPY

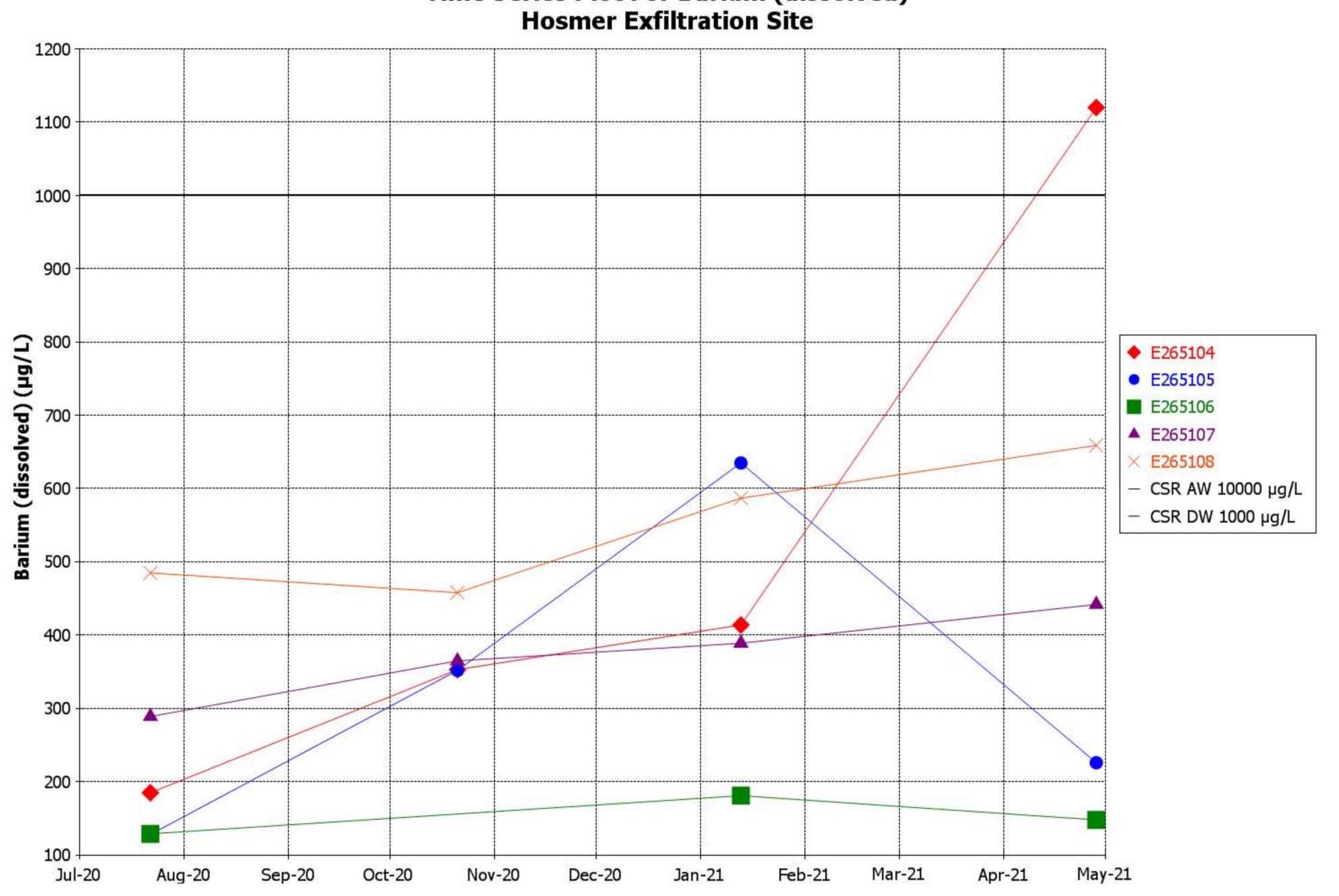
YELLOW - CLENT COPY


Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

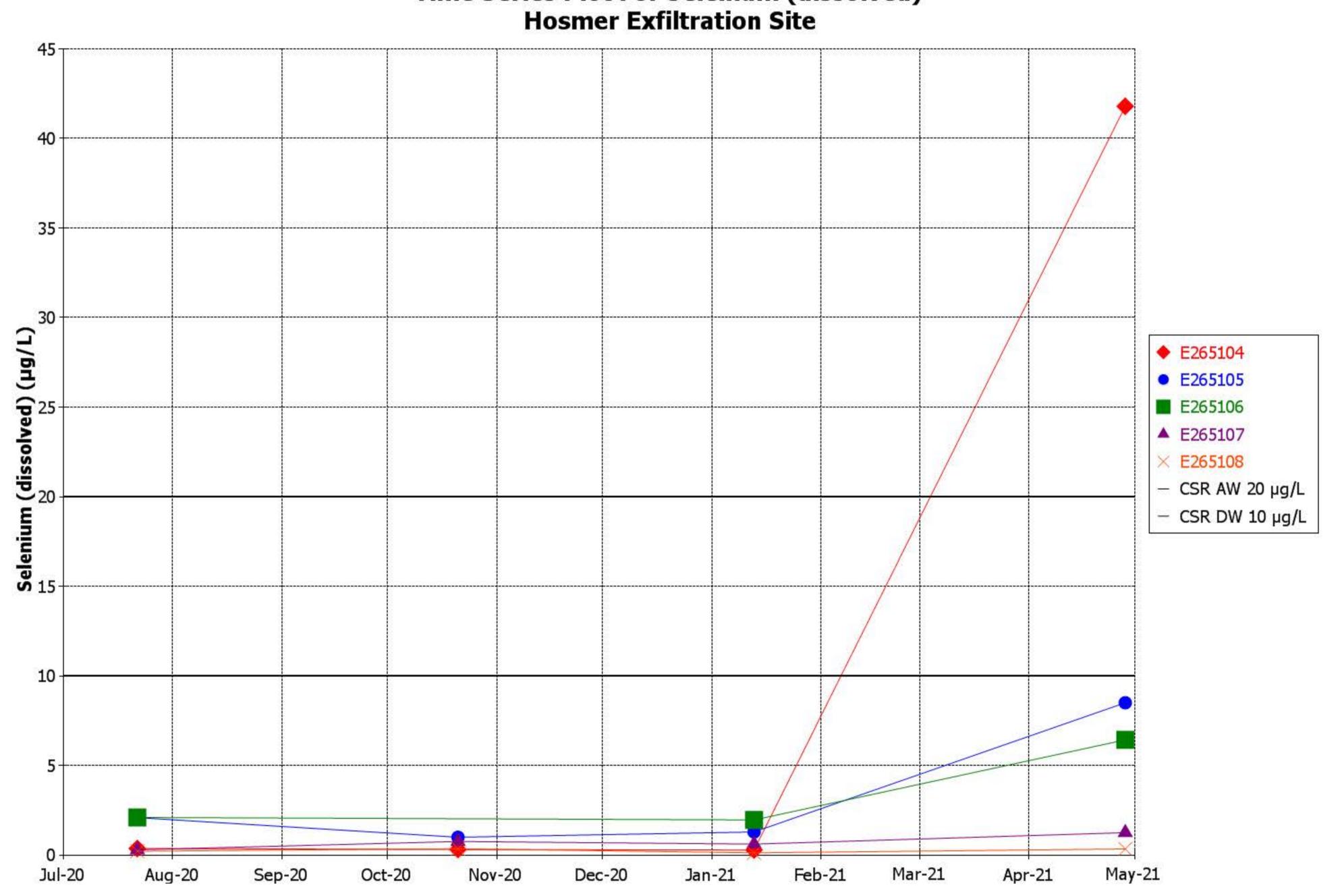
1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

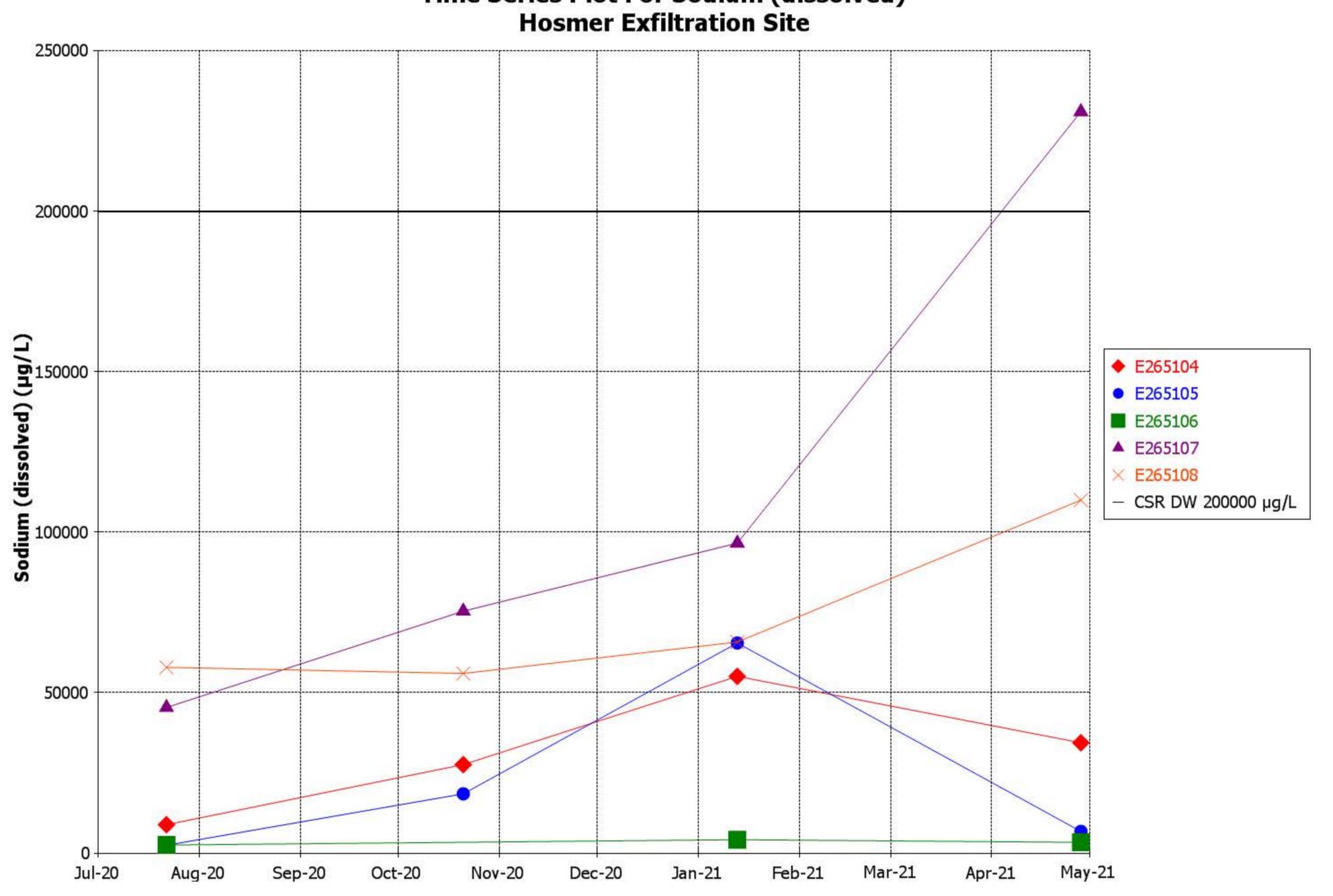

AUG 2020 FRONT

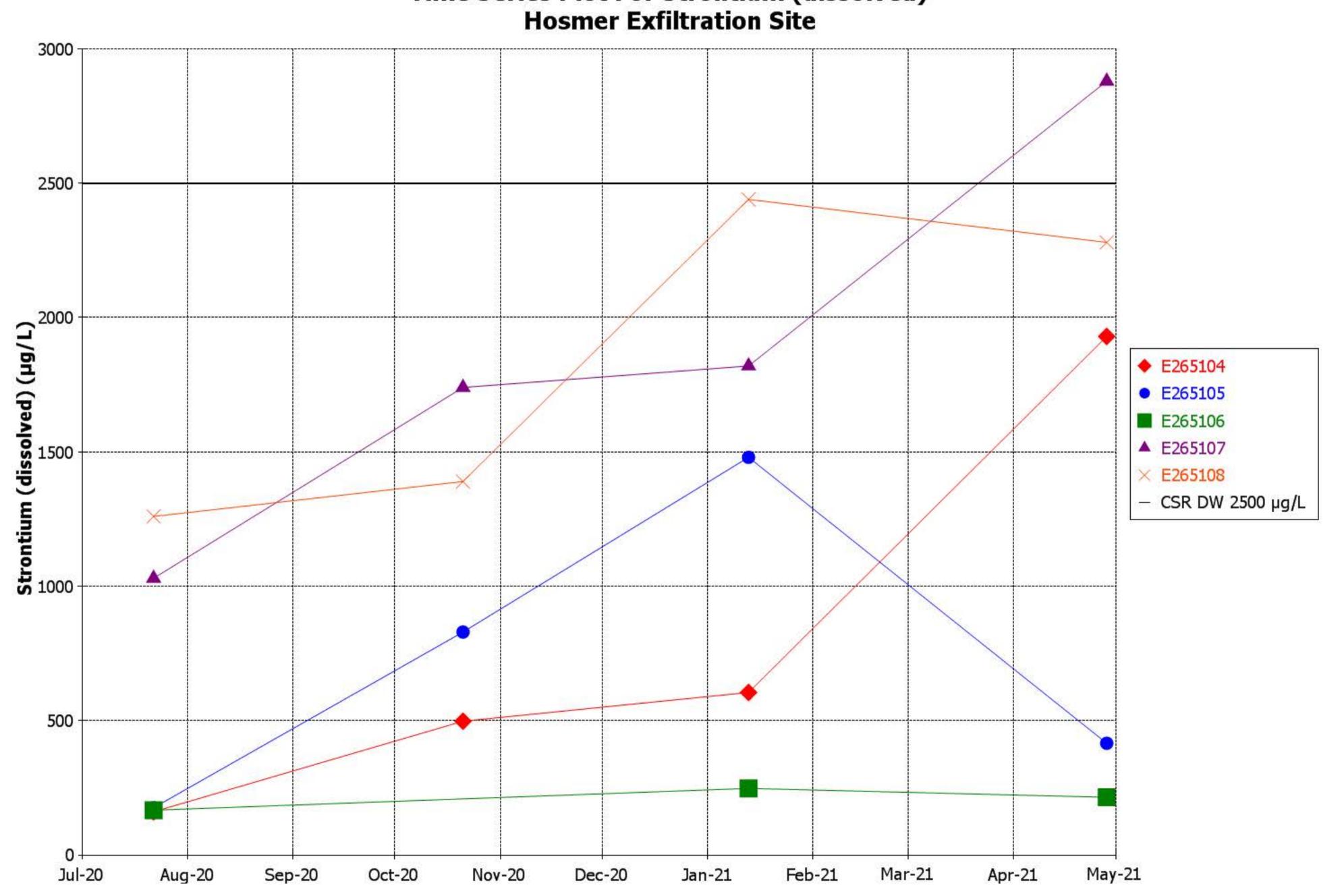

Time Series Plot For Lithium (dissolved)

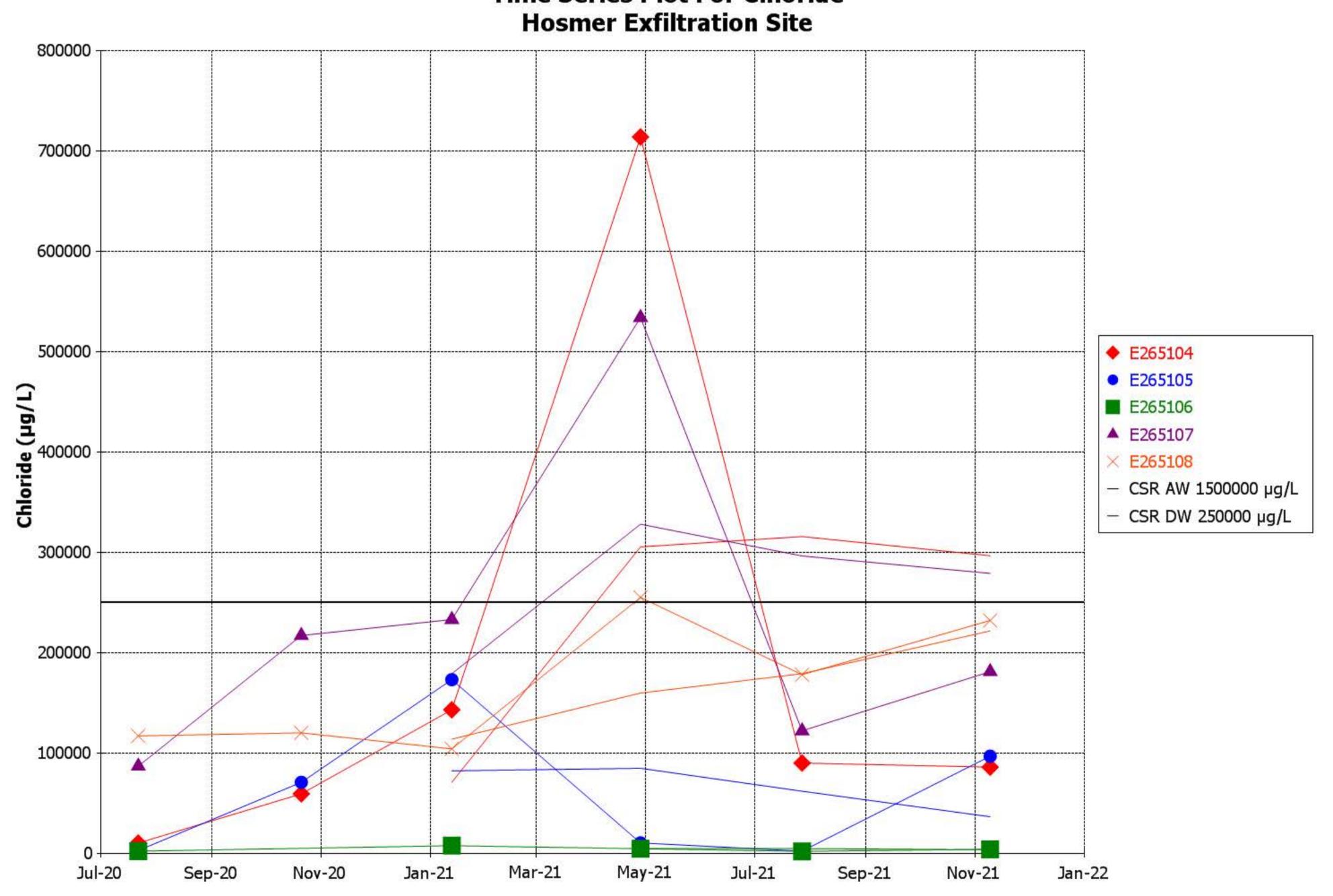

Time Series Plot For Selenium (dissolved)

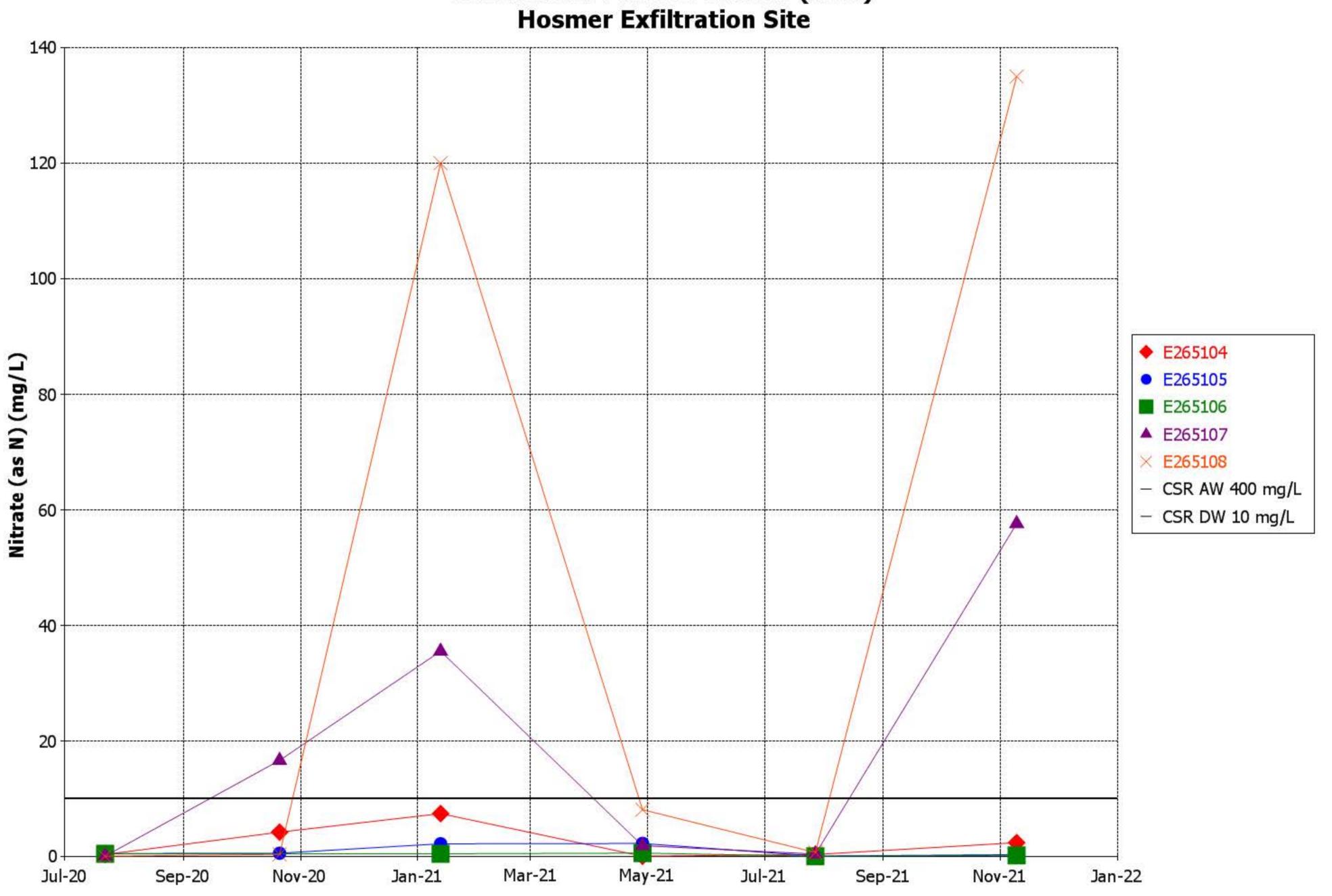

Time Series Plot For Ammonia (total, as N)

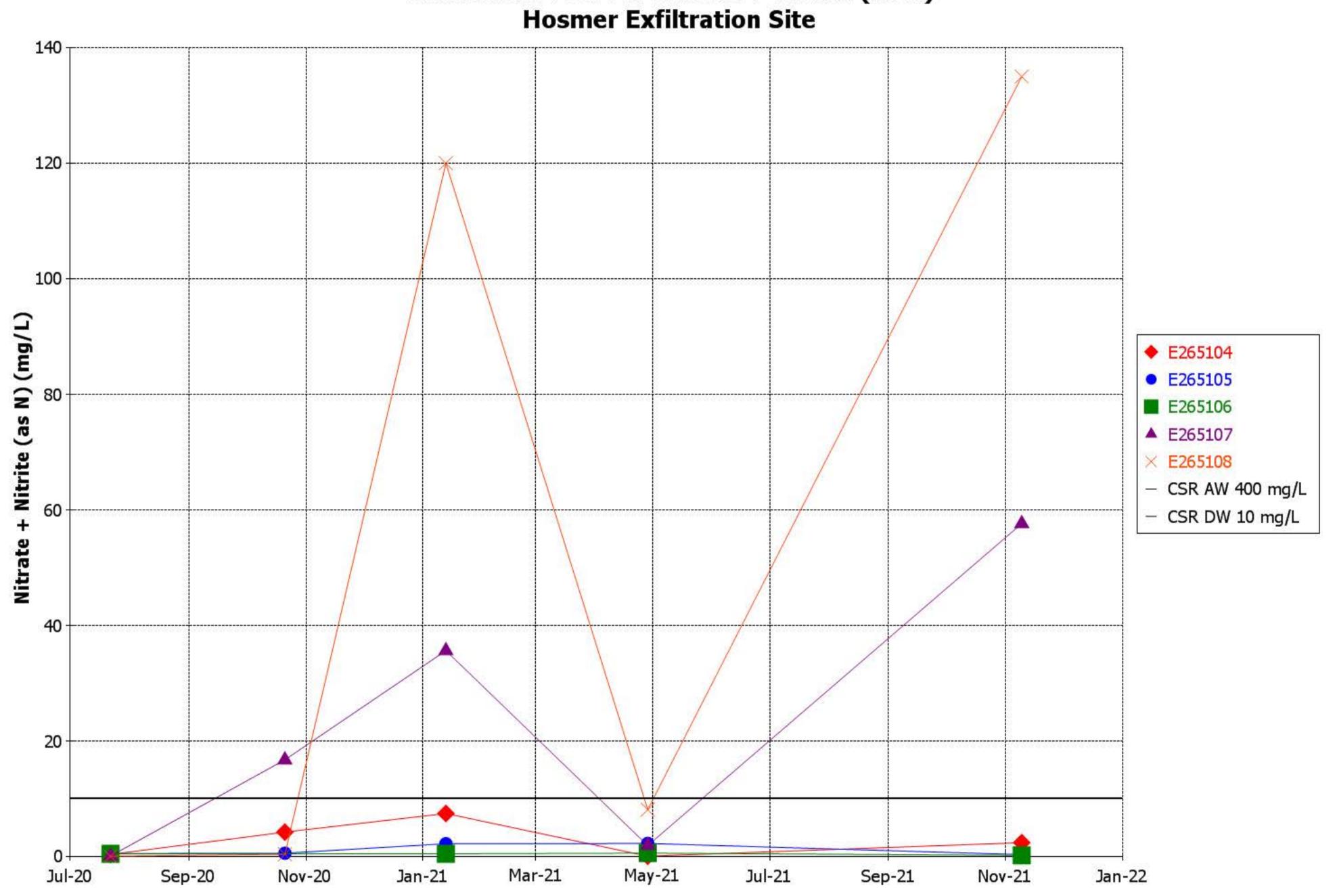

Time Series Plot For Barium (dissolved)


Time Series Plot For Manganese (dissolved)


Time Series Plot For Selenium (dissolved)


Time Series Plot For Sodium (dissolved) Hosmer Exfiltration Site


Time Series Plot For Strontium (dissolved)


Time Series Plot For Chloride

Time Series Plot For Nitrate (as N)

Time Series Plot For Nitrate + Nitrite (as N)

